import os import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Define models as None to delay loading model, model_instruct = None, None tokenizer, tokenizer_instruct = None, None # Define the response function with lazy loading def generate_response(input_text, max_new_tokens, temperature, top_k, top_p, repetition_penalty, num_beams, length_penalty, model_choice): global model, model_instruct, tokenizer, tokenizer_instruct # Lazy loading of the selected model if model_choice == "Zamba2-7B": if model is None: # Load only if not already loaded tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B") model = AutoModelForCausalLM.from_pretrained( "Zyphra/Zamba2-7B", device_map="cuda", torch_dtype=torch.bfloat16 ) selected_model = model selected_tokenizer = tokenizer else: if model_instruct is None: # Load only if not already loaded tokenizer_instruct = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B-instruct") model_instruct = AutoModelForCausalLM.from_pretrained( "Zyphra/Zamba2-7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16 ) selected_model = model_instruct selected_tokenizer = tokenizer_instruct # Tokenize and generate response input_ids = selected_tokenizer(input_text, return_tensors="pt").input_ids.to(selected_model.device) outputs = selected_model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, num_beams=num_beams, length_penalty=length_penalty, num_return_sequences=1 ) response = selected_tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Gradio interface with model selection demo = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(lines=1, placeholder="Enter your input text...", label="Input Text"), gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens"), gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature"), gr.Slider(1, 100, step=1, value=50, label="Top K"), gr.Slider(0.1, 1.0, step=0.1, value=0.9, label="Top P"), gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty"), gr.Slider(1, 10, step=1, value=5, label="Number of Beams"), gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty"), gr.Dropdown(["Zamba2-7B", "Zamba2-7B-instruct"], label="Model Choice") ], outputs=gr.Textbox(label="Generated Response"), title="Zamba2-7B Model Selector", description="Choose a model and ask a question with customizable parameters." ) if __name__ == "__main__": demo.launch()