File size: 7,638 Bytes
399ee3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from typing import List

import streamlit as st
from phi.assistant import Assistant
from phi.document import Document
from phi.document.reader.pdf import PDFReader
from phi.document.reader.website import WebsiteReader
from phi.utils.log import logger

from assistant import get_groq_assistant  # type: ignore

st.set_page_config(
    page_title="ISW RAG",
    page_icon=":books:",
)
st.title("RAG with Llama3 on Groq")
st.markdown("Built at ISW")

import os

from groq import Groq

client = Groq(
    api_key=os.environ.get("GROQ_API_KEY"),
)

chat_completion = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "Explain the importance of fast language models",
        }
    ],
    model="llama3-8b-8192",
)

print(chat_completion.choices[0].message.content)

print(chat_completion.choices[0].message.content)

def restart_assistant():
    st.session_state["rag_assistant"] = None
    st.session_state["rag_assistant_run_id"] = None
    if "url_scrape_key" in st.session_state:
        st.session_state["url_scrape_key"] += 1
    if "file_uploader_key" in st.session_state:
        st.session_state["file_uploader_key"] += 1
    st.rerun()


def main() -> None:
    # Get LLM model
    llm_model = st.sidebar.selectbox("Select LLM", options=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768"])
    # Set assistant_type in session state
    if "llm_model" not in st.session_state:
        st.session_state["llm_model"] = llm_model
    # Restart the assistant if assistant_type has changed
    elif st.session_state["llm_model"] != llm_model:
        st.session_state["llm_model"] = llm_model
        restart_assistant()

    # Get Embeddings model
    embeddings_model = st.sidebar.selectbox(
        "Select Embeddings",
        options=["nomic-embed-text", "text-embedding-3-small"],
        help="When you change the embeddings model, the documents will need to be added again.",
    )
    # Set assistant_type in session state
    if "embeddings_model" not in st.session_state:
        st.session_state["embeddings_model"] = embeddings_model
    # Restart the assistant if assistant_type has changed
    elif st.session_state["embeddings_model"] != embeddings_model:
        st.session_state["embeddings_model"] = embeddings_model
        st.session_state["embeddings_model_updated"] = True
        restart_assistant()

    # Get the assistant
    rag_assistant: Assistant
    if "rag_assistant" not in st.session_state or st.session_state["rag_assistant"] is None:
        logger.info(f"---*--- Creating {llm_model} Assistant ---*---")
        rag_assistant = get_groq_assistant(llm_model=llm_model, embeddings_model=embeddings_model)
        st.session_state["rag_assistant"] = rag_assistant
    else:
        rag_assistant = st.session_state["rag_assistant"]

    # Create assistant run (i.e. log to database) and save run_id in session state
    try:
        st.session_state["rag_assistant_run_id"] = rag_assistant.create_run()
    except Exception:
        st.warning("Could not create assistant, is the database running?")
        return

    # Load existing messages
    assistant_chat_history = rag_assistant.memory.get_chat_history()
    if len(assistant_chat_history) > 0:
        logger.debug("Loading chat history")
        st.session_state["messages"] = assistant_chat_history
    else:
        logger.debug("No chat history found")
        st.session_state["messages"] = [{"role": "assistant", "content": "Upload a doc and ask me questions..."}]

    # Prompt for user input
    if prompt := st.chat_input():
        st.session_state["messages"].append({"role": "user", "content": prompt})

    # Display existing chat messages
    for message in st.session_state["messages"]:
        if message["role"] == "system":
            continue
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # If last message is from a user, generate a new response
    last_message = st.session_state["messages"][-1]
    if last_message.get("role") == "user":
        question = last_message["content"]
        with st.chat_message("assistant"):
            response = ""
            resp_container = st.empty()
            for delta in rag_assistant.run(question):
                response += delta  # type: ignore
                resp_container.markdown(response)
            st.session_state["messages"].append({"role": "assistant", "content": response})

    # Load knowledge base
    if rag_assistant.knowledge_base:
        # -*- Add websites to knowledge base
        if "url_scrape_key" not in st.session_state:
            st.session_state["url_scrape_key"] = 0

        input_url = st.sidebar.text_input(
            "Add URL to Knowledge Base", type="default", key=st.session_state["url_scrape_key"]
        )
        add_url_button = st.sidebar.button("Add URL")
        if add_url_button:
            if input_url is not None:
                alert = st.sidebar.info("Processing URLs...", icon="ℹ️")
                if f"{input_url}_scraped" not in st.session_state:
                    scraper = WebsiteReader(max_links=2, max_depth=1)
                    web_documents: List[Document] = scraper.read(input_url)
                    if web_documents:
                        rag_assistant.knowledge_base.load_documents(web_documents, upsert=True)
                    else:
                        st.sidebar.error("Could not read website")
                    st.session_state[f"{input_url}_uploaded"] = True
                alert.empty()

        # Add PDFs to knowledge base
        if "file_uploader_key" not in st.session_state:
            st.session_state["file_uploader_key"] = 100

        uploaded_file = st.sidebar.file_uploader(
            "Add a PDF :page_facing_up:", type="pdf", key=st.session_state["file_uploader_key"]
        )
        if uploaded_file is not None:
            alert = st.sidebar.info("Processing PDF...", icon="🧠")
            rag_name = uploaded_file.name.split(".")[0]
            if f"{rag_name}_uploaded" not in st.session_state:
                reader = PDFReader()
                rag_documents: List[Document] = reader.read(uploaded_file)
                if rag_documents:
                    rag_assistant.knowledge_base.load_documents(rag_documents, upsert=True)
                else:
                    st.sidebar.error("Could not read PDF")
                st.session_state[f"{rag_name}_uploaded"] = True
            alert.empty()

    if rag_assistant.knowledge_base and rag_assistant.knowledge_base.vector_db:
        if st.sidebar.button("Clear Knowledge Base"):
            rag_assistant.knowledge_base.vector_db.clear()
            st.sidebar.success("Knowledge base cleared")

    if rag_assistant.storage:
        rag_assistant_run_ids: List[str] = rag_assistant.storage.get_all_run_ids()
        new_rag_assistant_run_id = st.sidebar.selectbox("Run ID", options=rag_assistant_run_ids)
        if st.session_state["rag_assistant_run_id"] != new_rag_assistant_run_id:
            logger.info(f"---*--- Loading {llm_model} run: {new_rag_assistant_run_id} ---*---")
            st.session_state["rag_assistant"] = get_groq_assistant(
                llm_model=llm_model, embeddings_model=embeddings_model, run_id=new_rag_assistant_run_id
            )
            st.rerun()

    if st.sidebar.button("New Run"):
        restart_assistant()

    if "embeddings_model_updated" in st.session_state:
        st.sidebar.info("Please add documents again as the embeddings model has changed.")
        st.session_state["embeddings_model_updated"] = False


main()