test / main.py
TahaRasouli's picture
Create main.py
399ee3e verified
raw
history blame
7.64 kB
from typing import List
import streamlit as st
from phi.assistant import Assistant
from phi.document import Document
from phi.document.reader.pdf import PDFReader
from phi.document.reader.website import WebsiteReader
from phi.utils.log import logger
from assistant import get_groq_assistant # type: ignore
st.set_page_config(
page_title="ISW RAG",
page_icon=":books:",
)
st.title("RAG with Llama3 on Groq")
st.markdown("Built at ISW")
import os
from groq import Groq
client = Groq(
api_key=os.environ.get("GROQ_API_KEY"),
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Explain the importance of fast language models",
}
],
model="llama3-8b-8192",
)
print(chat_completion.choices[0].message.content)
print(chat_completion.choices[0].message.content)
def restart_assistant():
st.session_state["rag_assistant"] = None
st.session_state["rag_assistant_run_id"] = None
if "url_scrape_key" in st.session_state:
st.session_state["url_scrape_key"] += 1
if "file_uploader_key" in st.session_state:
st.session_state["file_uploader_key"] += 1
st.rerun()
def main() -> None:
# Get LLM model
llm_model = st.sidebar.selectbox("Select LLM", options=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768"])
# Set assistant_type in session state
if "llm_model" not in st.session_state:
st.session_state["llm_model"] = llm_model
# Restart the assistant if assistant_type has changed
elif st.session_state["llm_model"] != llm_model:
st.session_state["llm_model"] = llm_model
restart_assistant()
# Get Embeddings model
embeddings_model = st.sidebar.selectbox(
"Select Embeddings",
options=["nomic-embed-text", "text-embedding-3-small"],
help="When you change the embeddings model, the documents will need to be added again.",
)
# Set assistant_type in session state
if "embeddings_model" not in st.session_state:
st.session_state["embeddings_model"] = embeddings_model
# Restart the assistant if assistant_type has changed
elif st.session_state["embeddings_model"] != embeddings_model:
st.session_state["embeddings_model"] = embeddings_model
st.session_state["embeddings_model_updated"] = True
restart_assistant()
# Get the assistant
rag_assistant: Assistant
if "rag_assistant" not in st.session_state or st.session_state["rag_assistant"] is None:
logger.info(f"---*--- Creating {llm_model} Assistant ---*---")
rag_assistant = get_groq_assistant(llm_model=llm_model, embeddings_model=embeddings_model)
st.session_state["rag_assistant"] = rag_assistant
else:
rag_assistant = st.session_state["rag_assistant"]
# Create assistant run (i.e. log to database) and save run_id in session state
try:
st.session_state["rag_assistant_run_id"] = rag_assistant.create_run()
except Exception:
st.warning("Could not create assistant, is the database running?")
return
# Load existing messages
assistant_chat_history = rag_assistant.memory.get_chat_history()
if len(assistant_chat_history) > 0:
logger.debug("Loading chat history")
st.session_state["messages"] = assistant_chat_history
else:
logger.debug("No chat history found")
st.session_state["messages"] = [{"role": "assistant", "content": "Upload a doc and ask me questions..."}]
# Prompt for user input
if prompt := st.chat_input():
st.session_state["messages"].append({"role": "user", "content": prompt})
# Display existing chat messages
for message in st.session_state["messages"]:
if message["role"] == "system":
continue
with st.chat_message(message["role"]):
st.write(message["content"])
# If last message is from a user, generate a new response
last_message = st.session_state["messages"][-1]
if last_message.get("role") == "user":
question = last_message["content"]
with st.chat_message("assistant"):
response = ""
resp_container = st.empty()
for delta in rag_assistant.run(question):
response += delta # type: ignore
resp_container.markdown(response)
st.session_state["messages"].append({"role": "assistant", "content": response})
# Load knowledge base
if rag_assistant.knowledge_base:
# -*- Add websites to knowledge base
if "url_scrape_key" not in st.session_state:
st.session_state["url_scrape_key"] = 0
input_url = st.sidebar.text_input(
"Add URL to Knowledge Base", type="default", key=st.session_state["url_scrape_key"]
)
add_url_button = st.sidebar.button("Add URL")
if add_url_button:
if input_url is not None:
alert = st.sidebar.info("Processing URLs...", icon="ℹ️")
if f"{input_url}_scraped" not in st.session_state:
scraper = WebsiteReader(max_links=2, max_depth=1)
web_documents: List[Document] = scraper.read(input_url)
if web_documents:
rag_assistant.knowledge_base.load_documents(web_documents, upsert=True)
else:
st.sidebar.error("Could not read website")
st.session_state[f"{input_url}_uploaded"] = True
alert.empty()
# Add PDFs to knowledge base
if "file_uploader_key" not in st.session_state:
st.session_state["file_uploader_key"] = 100
uploaded_file = st.sidebar.file_uploader(
"Add a PDF :page_facing_up:", type="pdf", key=st.session_state["file_uploader_key"]
)
if uploaded_file is not None:
alert = st.sidebar.info("Processing PDF...", icon="🧠")
rag_name = uploaded_file.name.split(".")[0]
if f"{rag_name}_uploaded" not in st.session_state:
reader = PDFReader()
rag_documents: List[Document] = reader.read(uploaded_file)
if rag_documents:
rag_assistant.knowledge_base.load_documents(rag_documents, upsert=True)
else:
st.sidebar.error("Could not read PDF")
st.session_state[f"{rag_name}_uploaded"] = True
alert.empty()
if rag_assistant.knowledge_base and rag_assistant.knowledge_base.vector_db:
if st.sidebar.button("Clear Knowledge Base"):
rag_assistant.knowledge_base.vector_db.clear()
st.sidebar.success("Knowledge base cleared")
if rag_assistant.storage:
rag_assistant_run_ids: List[str] = rag_assistant.storage.get_all_run_ids()
new_rag_assistant_run_id = st.sidebar.selectbox("Run ID", options=rag_assistant_run_ids)
if st.session_state["rag_assistant_run_id"] != new_rag_assistant_run_id:
logger.info(f"---*--- Loading {llm_model} run: {new_rag_assistant_run_id} ---*---")
st.session_state["rag_assistant"] = get_groq_assistant(
llm_model=llm_model, embeddings_model=embeddings_model, run_id=new_rag_assistant_run_id
)
st.rerun()
if st.sidebar.button("New Run"):
restart_assistant()
if "embeddings_model_updated" in st.session_state:
st.sidebar.info("Please add documents again as the embeddings model has changed.")
st.session_state["embeddings_model_updated"] = False
main()