Spaces:
Running
Running
Duplicate from fedor-ch/langchain-ynp-test
Browse filesCo-authored-by: Chemashkinf <fedor-ch@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +287 -0
- requirements.txt +8 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: "Chat with PDF •\_OpenAI"
|
3 |
+
emoji: 📄🤖
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.27.0
|
8 |
+
python_version: 3.10.9
|
9 |
+
app_file: app.py
|
10 |
+
pinned: false
|
11 |
+
duplicated_from: fedor-ch/langchain-ynp-test
|
12 |
+
---
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
|
5 |
+
from langchain.document_loaders import OnlinePDFLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.llms import OpenAI
|
8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.chains import ConversationalRetrievalChain
|
11 |
+
from langchain import PromptTemplate
|
12 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
13 |
+
import requests
|
14 |
+
from PIL import Image
|
15 |
+
import torch
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
20 |
+
# Chat History:
|
21 |
+
# {chat_history}
|
22 |
+
# Follow Up Input: {question}
|
23 |
+
# Standalone question:"""
|
24 |
+
|
25 |
+
# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
26 |
+
|
27 |
+
# template = """
|
28 |
+
# You are given the following extracted parts of a long document and a question. Provide a short structured answer.
|
29 |
+
# If you don't know the answer, look on the web. Don't try to make up an answer.
|
30 |
+
# Question: {question}
|
31 |
+
# =========
|
32 |
+
# {context}
|
33 |
+
# =========
|
34 |
+
# Answer in Markdown:"""
|
35 |
+
|
36 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png', 'chart_example.png')
|
37 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1081.png', 'chart_example_2.png')
|
38 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/18143564004789.png', 'chart_example_3.png')
|
39 |
+
torch.hub.download_url_to_file('https://sharkcoder.com/files/article/matplotlib-bar-plot.png', 'chart_example_4.png')
|
40 |
+
|
41 |
+
|
42 |
+
model_name = "google/matcha-chartqa"
|
43 |
+
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
44 |
+
processor = Pix2StructProcessor.from_pretrained(model_name)
|
45 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
46 |
+
model.to(device)
|
47 |
+
|
48 |
+
def filter_output(output):
|
49 |
+
return output.replace("<0x0A>", "")
|
50 |
+
|
51 |
+
def chart_qa(image, question):
|
52 |
+
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
|
53 |
+
predictions = model.generate(**inputs, max_new_tokens=512)
|
54 |
+
return filter_output(processor.decode(predictions[0], skip_special_tokens=True))
|
55 |
+
|
56 |
+
def loading_pdf():
|
57 |
+
return "Loading..."
|
58 |
+
|
59 |
+
|
60 |
+
def pdf_changes(pdf_doc, open_ai_key):
|
61 |
+
if open_ai_key is not None:
|
62 |
+
os.environ['OPENAI_API_KEY'] = open_ai_key
|
63 |
+
loader = OnlinePDFLoader(pdf_doc.name)
|
64 |
+
documents = loader.load()
|
65 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
66 |
+
texts = text_splitter.split_documents(documents)
|
67 |
+
embeddings = OpenAIEmbeddings()
|
68 |
+
db = Chroma.from_documents(texts, embeddings)
|
69 |
+
retriever = db.as_retriever()
|
70 |
+
global qa
|
71 |
+
qa = ConversationalRetrievalChain.from_llm(
|
72 |
+
llm=OpenAI(temperature=0.5),
|
73 |
+
retriever=retriever,
|
74 |
+
return_source_documents=True)
|
75 |
+
return "Ready"
|
76 |
+
else:
|
77 |
+
return "You forgot OpenAI API key"
|
78 |
+
|
79 |
+
def add_text(history, text):
|
80 |
+
history = history + [(text, None)]
|
81 |
+
return history, ""
|
82 |
+
|
83 |
+
def bot(history):
|
84 |
+
response = infer(history[-1][0], history)
|
85 |
+
history[-1][1] = ""
|
86 |
+
|
87 |
+
for character in response:
|
88 |
+
history[-1][1] += character
|
89 |
+
time.sleep(0.05)
|
90 |
+
yield history
|
91 |
+
|
92 |
+
|
93 |
+
def infer(question, history):
|
94 |
+
res = []
|
95 |
+
for human, ai in history[:-1]:
|
96 |
+
pair = (human, ai)
|
97 |
+
res.append(pair)
|
98 |
+
|
99 |
+
chat_history = res
|
100 |
+
#print(chat_history)
|
101 |
+
query = question
|
102 |
+
result = qa({"question": query, "chat_history": chat_history})
|
103 |
+
#print(result)
|
104 |
+
return result["answer"]
|
105 |
+
|
106 |
+
css="""
|
107 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
108 |
+
"""
|
109 |
+
|
110 |
+
title = """
|
111 |
+
<div style="text-align: center;">
|
112 |
+
<h1>YnP LangChain Test </h1>
|
113 |
+
<p style="text-align: center;">Please specify OpenAI Key before use</p>
|
114 |
+
</div>
|
115 |
+
"""
|
116 |
+
|
117 |
+
|
118 |
+
# with gr.Blocks(css=css) as demo:
|
119 |
+
# with gr.Column(elem_id="col-container"):
|
120 |
+
# gr.HTML(title)
|
121 |
+
|
122 |
+
# with gr.Column():
|
123 |
+
# openai_key = gr.Textbox(label="You OpenAI API key", type="password")
|
124 |
+
# pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
125 |
+
# with gr.Row():
|
126 |
+
# langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
127 |
+
# load_pdf = gr.Button("Load pdf to langchain")
|
128 |
+
|
129 |
+
# chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
130 |
+
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
131 |
+
# submit_btn = gr.Button("Send Message")
|
132 |
+
|
133 |
+
# load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
134 |
+
# load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
|
135 |
+
# question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
136 |
+
# bot, chatbot, chatbot
|
137 |
+
# )
|
138 |
+
# submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
139 |
+
# bot, chatbot, chatbot)
|
140 |
+
|
141 |
+
# demo.launch()
|
142 |
+
|
143 |
+
|
144 |
+
"""functions"""
|
145 |
+
|
146 |
+
def load_file():
|
147 |
+
return "Loading..."
|
148 |
+
|
149 |
+
def load_xlsx(name):
|
150 |
+
import pandas as pd
|
151 |
+
|
152 |
+
xls_file = rf'{name}'
|
153 |
+
data = pd.read_excel(xls_file)
|
154 |
+
return data
|
155 |
+
|
156 |
+
def table_loader(table_file, open_ai_key):
|
157 |
+
import os
|
158 |
+
from langchain.llms import OpenAI
|
159 |
+
from langchain.agents import create_pandas_dataframe_agent
|
160 |
+
from pandas import read_csv
|
161 |
+
|
162 |
+
global agent
|
163 |
+
if open_ai_key is not None:
|
164 |
+
os.environ['OPENAI_API_KEY'] = open_ai_key
|
165 |
+
else:
|
166 |
+
return "Enter API"
|
167 |
+
|
168 |
+
if table_file.name.endswith('.xlsx') or table_file.name.endswith('.xls'):
|
169 |
+
data = load_xlsx(table_file.name)
|
170 |
+
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
|
171 |
+
return "Ready!"
|
172 |
+
elif table_file.name.endswith('.csv'):
|
173 |
+
data = read_csv(table_file.name)
|
174 |
+
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
|
175 |
+
return "Ready!"
|
176 |
+
else:
|
177 |
+
return "Wrong file format! Upload excel file or csv!"
|
178 |
+
|
179 |
+
def run(query):
|
180 |
+
from langchain.callbacks import get_openai_callback
|
181 |
+
|
182 |
+
with get_openai_callback() as cb:
|
183 |
+
response = (agent.run(query))
|
184 |
+
costs = (f"Total Cost (USD): ${cb.total_cost}")
|
185 |
+
output = f'{response} \n {costs}'
|
186 |
+
return output
|
187 |
+
|
188 |
+
def respond(message, chat_history):
|
189 |
+
import time
|
190 |
+
|
191 |
+
bot_message = run(message)
|
192 |
+
chat_history.append((message, bot_message))
|
193 |
+
time.sleep(0.5)
|
194 |
+
return "", chat_history
|
195 |
+
|
196 |
+
|
197 |
+
with gr.Blocks() as demo:
|
198 |
+
with gr.Column(elem_id="col-container"):
|
199 |
+
gr.HTML(title)
|
200 |
+
key = gr.Textbox(
|
201 |
+
show_label=False,
|
202 |
+
placeholder="Your OpenAI key",
|
203 |
+
type = 'password',
|
204 |
+
).style(container=False)
|
205 |
+
|
206 |
+
# PDF processing tab
|
207 |
+
with gr.Tab("PDFs"):
|
208 |
+
|
209 |
+
with gr.Row():
|
210 |
+
|
211 |
+
with gr.Column(scale=0.5):
|
212 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
213 |
+
load_pdf = gr.Button("Load pdf to langchain")
|
214 |
+
|
215 |
+
with gr.Column(scale=0.5):
|
216 |
+
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
217 |
+
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
|
221 |
+
with gr.Column(scale=1):
|
222 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
223 |
+
|
224 |
+
with gr.Row():
|
225 |
+
|
226 |
+
with gr.Column(scale=0.85):
|
227 |
+
question = gr.Textbox(
|
228 |
+
show_label=False,
|
229 |
+
placeholder="Enter text and press enter, or upload an image",
|
230 |
+
).style(container=False)
|
231 |
+
|
232 |
+
with gr.Column(scale=0.15, min_width=0):
|
233 |
+
clr_btn = gr.Button("Clear!")
|
234 |
+
|
235 |
+
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
236 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc, key], outputs=[langchain_status], queue=True)
|
237 |
+
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
238 |
+
bot, chatbot, chatbot
|
239 |
+
)
|
240 |
+
|
241 |
+
# XLSX and CSV processing tab
|
242 |
+
with gr.Tab("Spreadsheets"):
|
243 |
+
with gr.Row():
|
244 |
+
|
245 |
+
with gr.Column(scale=0.5):
|
246 |
+
status_sh = gr.Textbox(label="Status", placeholder="", interactive=False)
|
247 |
+
load_table = gr.Button("Load csv|xlsx to langchain")
|
248 |
+
|
249 |
+
with gr.Column(scale=0.5):
|
250 |
+
raw_table = gr.File(label="Load a table file (xls or csv)", file_types=['.csv, xlsx, xls'], type="file")
|
251 |
+
|
252 |
+
|
253 |
+
with gr.Row():
|
254 |
+
|
255 |
+
with gr.Column(scale=1):
|
256 |
+
chatbot_sh = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
257 |
+
|
258 |
+
|
259 |
+
with gr.Row():
|
260 |
+
|
261 |
+
with gr.Column(scale=0.85):
|
262 |
+
question_sh = gr.Textbox(
|
263 |
+
show_label=False,
|
264 |
+
placeholder="Enter text and press enter, or upload an image",
|
265 |
+
).style(container=False)
|
266 |
+
|
267 |
+
with gr.Column(scale=0.15, min_width=0):
|
268 |
+
clr_btn = gr.Button("Clear!")
|
269 |
+
|
270 |
+
load_table.click(load_file, None, status_sh, queue=False)
|
271 |
+
load_table.click(table_loader, inputs=[raw_table, key], outputs=[status_sh], queue=False)
|
272 |
+
|
273 |
+
question_sh.submit(respond, [question_sh, chatbot_sh], [question_sh, chatbot_sh])
|
274 |
+
clr_btn.click(lambda: None, None, chatbot_sh, queue=False)
|
275 |
+
|
276 |
+
|
277 |
+
with gr.Tab("Charts"):
|
278 |
+
image = gr.Image(type="pil", label="Chart")
|
279 |
+
question = gr.Textbox(label="Question")
|
280 |
+
load_chart = gr.Button("Load chart and question!")
|
281 |
+
answer = gr.Textbox(label="Model Output")
|
282 |
+
|
283 |
+
load_chart.click(chart_qa, [image, question], answer)
|
284 |
+
|
285 |
+
|
286 |
+
demo.queue(concurrency_count=3)
|
287 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
tiktoken
|
3 |
+
chromadb
|
4 |
+
langchain
|
5 |
+
unstructured
|
6 |
+
unstructured[local-inference]
|
7 |
+
pandas
|
8 |
+
tabulate
|