File size: 6,086 Bytes
143d264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from nemo.collections.asr.models import EncDecCTCModelBPE
from omegaconf import open_dict
#import yt_dlp as youtube_dl
import os
import tempfile
import torch
import gradio as gr
from pydub import AudioSegment
import time

device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAME="ayymen/stt_zgh_fastconformer_ctc_small"
YT_LENGTH_LIMIT_S=3600

model = EncDecCTCModelBPE.from_pretrained(model_name=MODEL_NAME).to(device)

with open_dict(model.cfg):
    model.cfg.decoding.strategy = "beam"
    model.cfg.decoding.beam.beam_size = 256 # Desired Beam Size
    model.cfg.decoding.beam.beam_alpha = 1.5 # Desired Beam Alpha
    model.cfg.decoding.beam.beam_beta = 1.5 # Desired Beam Beta
    model.cfg.decoding.beam.kenlm_path = "kenlm.bin" # Path to KenLM binary file

model.change_decoding_strategy(model.cfg.decoding)

model.eval()

def get_transcripts(audio_path):
    audio = AudioSegment.from_file(audio_path)
    # check if audio is mono 16kHz
    if audio.channels != 1 or audio.frame_rate != 16000:
        audio = audio.set_channels(1).set_frame_rate(16000) # convert to mono 16kHz
        with tempfile.TemporaryDirectory() as tmpdirname:
            audio_path = os.path.join(tmpdirname, "audio.wav")
            audio.export(audio_path, format="wav")
            text = model.transcribe([audio_path])[0]
    else:
        text = model.transcribe([audio_path])[0]
    return text

'''
article = (
    "<p style='text-align: center'>"
    "<a href='https://huggingface.co/nvidia/parakeet-rnnt-1.1b' target='_blank'>πŸŽ™οΈ Learn more about Parakeet model</a> | "
    "<a href='https://arxiv.org/abs/2305.05084' target='_blank'>πŸ“š FastConformer paper</a> | "
    "<a href='https://github.com/NVIDIA/NeMo' target='_blank'>πŸ§‘β€πŸ’» Repository</a>"
    "</p>"
)
'''

EXAMPLES = [
    ["135.wav"],
    ["common_voice_zgh_37837257.mp3"]
]

"""
YT_EXAMPLES = [
    ["https://www.youtube.com/shorts/CSgTSE50MHY"],
    ["https://www.youtube.com/shorts/OxQtqOyAFLE"]
]
"""

def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    if "youtube.com/shorts/" in video_id:
        video_id = video_id.split("/")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        audio = AudioSegment.from_file(filepath)
        audio = audio.set_channels(1).set_frame_rate(16000) # convert to mono 16kHz
        wav_filepath = os.path.join(tmpdirname, "audio.wav")
        audio.export(wav_filepath, format="wav")
        text = get_transcripts(wav_filepath)

    return html_embed_str, text


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=get_transcripts,
    inputs=[
        gr.Audio(sources="microphone", type="filepath")
    ],
    outputs="text",
    title="Transcribe Audio",
    description=(
        "Transcribe microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=get_transcripts,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
    ],
    outputs="text",
    examples=EXAMPLES,
    title="Transcribe Audio",
    description=(
        "Transcribe microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

"""
youtube_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
    ],
    outputs=["html", "text"],
    examples=YT_EXAMPLES,
    title="Transcribe Audio",
    description=(
        "Transcribe microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)
"""

with demo:
    gr.TabbedInterface(
        [
            mf_transcribe,
            file_transcribe,
            #youtube_transcribe
        ],
        [
            "Microphone",
            "Audio file",
            #"Youtube Video"
        ]
    )

demo.launch()