from nemo.collections.asr.models import EncDecCTCModelBPE
from omegaconf import open_dict
#import yt_dlp as youtube_dl
import os
import tempfile
import torch
import gradio as gr
from pydub import AudioSegment
import time
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAME="ayymen/stt_zgh_fastconformer_ctc_small"
YT_LENGTH_LIMIT_S=3600
model = EncDecCTCModelBPE.from_pretrained(model_name=MODEL_NAME).to(device)
with open_dict(model.cfg):
model.cfg.decoding.strategy = "beam"
model.cfg.decoding.beam.beam_size = 256 # Desired Beam Size
model.cfg.decoding.beam.beam_alpha = 1.5 # Desired Beam Alpha
model.cfg.decoding.beam.beam_beta = 1.5 # Desired Beam Beta
model.cfg.decoding.beam.kenlm_path = "kenlm.bin" # Path to KenLM binary file
model.change_decoding_strategy(model.cfg.decoding)
model.eval()
def get_transcripts(audio_path):
audio = AudioSegment.from_file(audio_path)
# check if audio is mono 16kHz
if audio.channels != 1 or audio.frame_rate != 16000:
audio = audio.set_channels(1).set_frame_rate(16000) # convert to mono 16kHz
with tempfile.TemporaryDirectory() as tmpdirname:
audio_path = os.path.join(tmpdirname, "audio.wav")
audio.export(audio_path, format="wav")
text = model.transcribe([audio_path])[0]
else:
text = model.transcribe([audio_path])[0]
return text
'''
article = (
"
"
"🎙️ Learn more about Parakeet model | "
"📚 FastConformer paper | "
"🧑💻 Repository"
"
"
)
'''
EXAMPLES = [
["135.wav"],
["common_voice_zgh_37837257.mp3"]
]
"""
YT_EXAMPLES = [
["https://www.youtube.com/shorts/CSgTSE50MHY"],
["https://www.youtube.com/shorts/OxQtqOyAFLE"]
]
"""
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
if "youtube.com/shorts/" in video_id:
video_id = video_id.split("/")[-1]
HTML_str = (
f' '
" "
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
audio = AudioSegment.from_file(filepath)
audio = audio.set_channels(1).set_frame_rate(16000) # convert to mono 16kHz
wav_filepath = os.path.join(tmpdirname, "audio.wav")
audio.export(wav_filepath, format="wav")
text = get_transcripts(wav_filepath)
return html_embed_str, text
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=get_transcripts,
inputs=[
gr.Audio(sources="microphone", type="filepath")
],
outputs="text",
title="Transcribe Audio",
description=(
"Transcribe microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=get_transcripts,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
],
outputs="text",
examples=EXAMPLES,
title="Transcribe Audio",
description=(
"Transcribe microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
"""
youtube_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
],
outputs=["html", "text"],
examples=YT_EXAMPLES,
title="Transcribe Audio",
description=(
"Transcribe microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
"""
with demo:
gr.TabbedInterface(
[
mf_transcribe,
file_transcribe,
#youtube_transcribe
],
[
"Microphone",
"Audio file",
#"Youtube Video"
]
)
demo.launch(server_name="0.0.0.0")