Spaces:
Running
Running
Enable voice cloning
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import tempfile
|
3 |
-
from TTS.
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import torch
|
6 |
|
@@ -20,41 +20,42 @@ my_examples = [
|
|
20 |
|
21 |
my_inputs = [
|
22 |
gr.Textbox(lines=5, label="Input Text"),
|
|
|
23 |
gr.Checkbox(label="Split Sentences (each sentence will be generated separately)", value=True)
|
24 |
]
|
25 |
|
26 |
-
my_outputs = gr.Audio(type="filepath", label="Output Audio")
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
config_path = hf_hub_download(repo_id=REPO_ID, filename="config.json")
|
31 |
-
|
32 |
-
# init synthesizer
|
33 |
-
synthesizer = Synthesizer(
|
34 |
-
best_model_path,
|
35 |
-
config_path,
|
36 |
-
use_cuda=CUDA
|
37 |
-
)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# replace oov characters
|
40 |
text = text.replace("\n", ". ")
|
41 |
text = text.replace("(", ",")
|
42 |
text = text.replace(")", ",")
|
43 |
text = text.replace(";", ",")
|
44 |
|
45 |
-
# create audio file
|
46 |
-
wavs = synthesizer.tts(text, split_sentences=split_sentences)
|
47 |
with tempfile.NamedTemporaryFile(suffix = ".wav", delete = False) as fp:
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
return fp.name
|
50 |
-
|
51 |
iface = gr.Interface(
|
52 |
fn=tts,
|
53 |
inputs=my_inputs,
|
54 |
outputs=my_outputs,
|
55 |
title=my_title,
|
56 |
-
description
|
57 |
-
examples
|
58 |
cache_examples=True
|
59 |
)
|
60 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import tempfile
|
3 |
+
from TTS.api import TTS
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import torch
|
6 |
|
|
|
20 |
|
21 |
my_inputs = [
|
22 |
gr.Textbox(lines=5, label="Input Text"),
|
23 |
+
gr.Audio(type="filepath", label="Speaker audio for voice cloning (optional)"),
|
24 |
gr.Checkbox(label="Split Sentences (each sentence will be generated separately)", value=True)
|
25 |
]
|
26 |
|
27 |
+
my_outputs = gr.Audio(type="filepath", label="Output Audio", autoplay=True)
|
28 |
|
29 |
+
best_model_path = hf_hub_download(repo_id=REPO_ID, filename="best_model.pth")
|
30 |
+
config_path = hf_hub_download(repo_id=REPO_ID, filename="config.json")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
api = TTS(model_path=best_model_path, config_path=config_path).to("cuda" if CUDA else "cpu")
|
33 |
+
|
34 |
+
# load voice conversion model
|
35 |
+
api.load_vc_model_by_name("voice_conversion_models/multilingual/vctk/freevc24", gpu=CUDA)
|
36 |
+
|
37 |
+
def tts(text: str, speaker_wav: str = None, split_sentences: bool = True):
|
38 |
# replace oov characters
|
39 |
text = text.replace("\n", ". ")
|
40 |
text = text.replace("(", ",")
|
41 |
text = text.replace(")", ",")
|
42 |
text = text.replace(";", ",")
|
43 |
|
|
|
|
|
44 |
with tempfile.NamedTemporaryFile(suffix = ".wav", delete = False) as fp:
|
45 |
+
if speaker_wav:
|
46 |
+
api.tts_with_vc_to_file(text, speaker_wav=speaker_wav, file_path=fp.name, split_sentences=split_sentences)
|
47 |
+
else:
|
48 |
+
api.tts_to_file(text, file_path=fp.name, split_sentences=split_sentences)
|
49 |
+
|
50 |
return fp.name
|
51 |
+
|
52 |
iface = gr.Interface(
|
53 |
fn=tts,
|
54 |
inputs=my_inputs,
|
55 |
outputs=my_outputs,
|
56 |
title=my_title,
|
57 |
+
description=my_description,
|
58 |
+
examples=my_examples,
|
59 |
cache_examples=True
|
60 |
)
|
61 |
iface.launch()
|