import gradio as gr import tempfile from TTS.api import TTS from huggingface_hub import hf_hub_download import torch CUDA = torch.cuda.is_available() REPO_ID = "ayymen/Coqui-TTS-Vits-shi" VOICE_CONVERSION_MODELS = { 'freevc24': 'voice_conversion_models/multilingual/vctk/freevc24', 'openvoice_v1': 'voice_conversion_models/multilingual/multi-dataset/openvoice_v1', 'openvoice_v2': 'voice_conversion_models/multilingual/multi-dataset/openvoice_v2', } my_title = "ⴰⴹⵕⵉⵚ ⵙ ⵉⵎⵙⵍⵉ - Tamazight Text-to-Speech" my_description = "This model is based on [VITS](https://github.com/jaywalnut310/vits), thanks to 🐸 [Coqui.ai](https://coqui.ai/)." my_examples = [ ["ⴰⵣⵓⵍ. ⵎⴰⵏⵣⴰⴽⵉⵏ?"], ["ⵡⴰ ⵜⴰⵎⵖⴰⵔⵜ ⵎⴰ ⴷ ⵓⴽⴰⵏ ⵜⵙⴽⵔⵜ?"], ["ⴳⵏ ⴰⴷ ⴰⴽ ⵉⵙⵙⴳⵏ ⵕⴱⴱⵉ ⵉⵜⵜⵓ ⴽ."], ["ⴰⵔⵔⴰⵡ ⵏ ⵍⵀⵎⵎ ⵢⵓⴽⵔ ⴰⵖ ⵉⵀⴷⵓⵎⵏ ⵏⵏⵖ!"] ] my_inputs = [ gr.Textbox(lines=5, label="Input Text", placeholder="The only available characters are: ⴰⴱⴳⴷⴹⴻⴼⴽⵀⵃⵄⵅⵇⵉⵊⵍⵎⵏⵓⵔⵕⵖⵙⵚⵛⵜⵟⵡⵢⵣⵥⵯ !,.:?"), gr.Audio(type="filepath", label="Speaker audio for voice cloning (optional)"), gr.Dropdown(label="Voice Conversion Model", choices=list(VOICE_CONVERSION_MODELS.keys())), gr.Checkbox(label="Split Sentences (each sentence will be generated separately)", value=True) ] my_outputs = gr.Audio(type="filepath", label="Output Audio", autoplay=True) best_model_path = hf_hub_download(repo_id=REPO_ID, filename="best_model.pth") config_path = hf_hub_download(repo_id=REPO_ID, filename="config.json") api = TTS(model_path=best_model_path, config_path=config_path).to("cuda" if CUDA else "cpu") # pre-download voice conversion models for model in VOICE_CONVERSION_MODELS.values(): api.load_vc_model_by_name(model, gpu=CUDA) def tts(text: str, speaker_wav: str = None, voice_cv_model: str = 'freevc24', split_sentences: bool = True): # replace oov characters text = text.replace("\n", ". ") text = text.replace("(", ",") text = text.replace(")", ",") text = text.replace('"', ",") text = text.replace(";", ",") text = text.replace("-", " ") with tempfile.NamedTemporaryFile(suffix = ".wav", delete = False) as fp: if speaker_wav: api.load_vc_model_by_name(VOICE_CONVERSION_MODELS[voice_cv_model], gpu=CUDA) api.tts_with_vc_to_file(text, speaker_wav=speaker_wav, file_path=fp.name, split_sentences=split_sentences) else: api.tts_to_file(text, file_path=fp.name, split_sentences=split_sentences) return fp.name iface = gr.Interface( fn=tts, inputs=my_inputs, outputs=my_outputs, title=my_title, description=my_description, examples=my_examples, cache_examples=True ) iface.launch()