File size: 7,941 Bytes
18793b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import cv2
import numpy as np

from .matlab_cp2tform import get_similarity_transform_for_cv2

# reference facial points, a list of coordinates (x,y)
REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
                           [33.54930115, 92.3655014], [62.72990036, 92.20410156]]

DEFAULT_CROP_SIZE = (96, 112)


class FaceWarpException(Exception):

    def __str__(self):
        return 'In File {}:{}'.format(__file__, super.__str__(self))


def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
    """
    Function:
    ----------
        get reference 5 key points according to crop settings:
        0. Set default crop_size:
            if default_square:
                crop_size = (112, 112)
            else:
                crop_size = (96, 112)
        1. Pad the crop_size by inner_padding_factor in each side;
        2. Resize crop_size into (output_size - outer_padding*2),
            pad into output_size with outer_padding;
        3. Output reference_5point;
    Parameters:
    ----------
        @output_size: (w, h) or None
            size of aligned face image
        @inner_padding_factor: (w_factor, h_factor)
            padding factor for inner (w, h)
        @outer_padding: (w_pad, h_pad)
            each row is a pair of coordinates (x, y)
        @default_square: True or False
            if True:
                default crop_size = (112, 112)
            else:
                default crop_size = (96, 112);
        !!! make sure, if output_size is not None:
                (output_size - outer_padding)
                = some_scale * (default crop_size * (1.0 +
                inner_padding_factor))
    Returns:
    ----------
        @reference_5point: 5x2 np.array
            each row is a pair of transformed coordinates (x, y)
    """

    tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
    tmp_crop_size = np.array(DEFAULT_CROP_SIZE)

    # 0) make the inner region a square
    if default_square:
        size_diff = max(tmp_crop_size) - tmp_crop_size
        tmp_5pts += size_diff / 2
        tmp_crop_size += size_diff

    if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):

        return tmp_5pts

    if (inner_padding_factor == 0 and outer_padding == (0, 0)):
        if output_size is None:
            return tmp_5pts
        else:
            raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))

    # check output size
    if not (0 <= inner_padding_factor <= 1.0):
        raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')

    if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
        output_size = tmp_crop_size * \
            (1 + inner_padding_factor * 2).astype(np.int32)
        output_size += np.array(outer_padding)
    if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
        raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')

    # 1) pad the inner region according inner_padding_factor
    if inner_padding_factor > 0:
        size_diff = tmp_crop_size * inner_padding_factor * 2
        tmp_5pts += size_diff / 2
        tmp_crop_size += np.round(size_diff).astype(np.int32)

    # 2) resize the padded inner region
    size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2

    if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
        raise FaceWarpException('Must have (output_size - outer_padding)'
                                '= some_scale * (crop_size * (1.0 + inner_padding_factor)')

    scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
    tmp_5pts = tmp_5pts * scale_factor
    #    size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
    #    tmp_5pts = tmp_5pts + size_diff / 2
    tmp_crop_size = size_bf_outer_pad

    # 3) add outer_padding to make output_size
    reference_5point = tmp_5pts + np.array(outer_padding)
    tmp_crop_size = output_size

    return reference_5point


def get_affine_transform_matrix(src_pts, dst_pts):
    """
    Function:
    ----------
        get affine transform matrix 'tfm' from src_pts to dst_pts
    Parameters:
    ----------
        @src_pts: Kx2 np.array
            source points matrix, each row is a pair of coordinates (x, y)
        @dst_pts: Kx2 np.array
            destination points matrix, each row is a pair of coordinates (x, y)
    Returns:
    ----------
        @tfm: 2x3 np.array
            transform matrix from src_pts to dst_pts
    """

    tfm = np.float32([[1, 0, 0], [0, 1, 0]])
    n_pts = src_pts.shape[0]
    ones = np.ones((n_pts, 1), src_pts.dtype)
    src_pts_ = np.hstack([src_pts, ones])
    dst_pts_ = np.hstack([dst_pts, ones])

    A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)

    if rank == 3:
        tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
    elif rank == 2:
        tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])

    return tfm


def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
    """
    Function:
    ----------
        apply affine transform 'trans' to uv
    Parameters:
    ----------
        @src_img: 3x3 np.array
            input image
        @facial_pts: could be
            1)a list of K coordinates (x,y)
        or
            2) Kx2 or 2xK np.array
            each row or col is a pair of coordinates (x, y)
        @reference_pts: could be
            1) a list of K coordinates (x,y)
        or
            2) Kx2 or 2xK np.array
            each row or col is a pair of coordinates (x, y)
        or
            3) None
            if None, use default reference facial points
        @crop_size: (w, h)
            output face image size
        @align_type: transform type, could be one of
            1) 'similarity': use similarity transform
            2) 'cv2_affine': use the first 3 points to do affine transform,
                    by calling cv2.getAffineTransform()
            3) 'affine': use all points to do affine transform
    Returns:
    ----------
        @face_img: output face image with size (w, h) = @crop_size
    """

    if reference_pts is None:
        if crop_size[0] == 96 and crop_size[1] == 112:
            reference_pts = REFERENCE_FACIAL_POINTS
        else:
            default_square = False
            inner_padding_factor = 0
            outer_padding = (0, 0)
            output_size = crop_size

            reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
                                                        default_square)

    ref_pts = np.float32(reference_pts)
    ref_pts_shp = ref_pts.shape
    if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
        raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')

    if ref_pts_shp[0] == 2:
        ref_pts = ref_pts.T

    src_pts = np.float32(facial_pts)
    src_pts_shp = src_pts.shape
    if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
        raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')

    if src_pts_shp[0] == 2:
        src_pts = src_pts.T

    if src_pts.shape != ref_pts.shape:
        raise FaceWarpException('facial_pts and reference_pts must have the same shape')

    if align_type == 'cv2_affine':
        tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
    elif align_type == 'affine':
        tfm = get_affine_transform_matrix(src_pts, ref_pts)
    else:
        tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)

    face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))

    return face_img