File size: 5,717 Bytes
18793b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import datetime
import random
import math
import os

from PIL import Image


LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)


def resample_image(im, width, height):
    im = Image.fromarray(im)
    im = im.resize((int(width), int(height)), resample=LANCZOS)
    return np.array(im)


def resize_image(im, width, height, resize_mode=1):
    """
    Resizes an image with the specified resize_mode, width, and height.

    Args:
        resize_mode: The mode to use when resizing the image.
            0: Resize the image to the specified width and height.
            1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
            2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
        im: The image to resize.
        width: The width to resize the image to.
        height: The height to resize the image to.
    """

    im = Image.fromarray(im)

    def resize(im, w, h):
        return im.resize((w, h), resample=LANCZOS)

    if resize_mode == 0:
        res = resize(im, width, height)

    elif resize_mode == 1:
        ratio = width / height
        src_ratio = im.width / im.height

        src_w = width if ratio > src_ratio else im.width * height // im.height
        src_h = height if ratio <= src_ratio else im.height * width // im.width

        resized = resize(im, src_w, src_h)
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))

    else:
        ratio = width / height
        src_ratio = im.width / im.height

        src_w = width if ratio < src_ratio else im.width * height // im.height
        src_h = height if ratio >= src_ratio else im.height * width // im.width

        resized = resize(im, src_w, src_h)
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))

        if ratio < src_ratio:
            fill_height = height // 2 - src_h // 2
            if fill_height > 0:
                res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
                res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
        elif ratio > src_ratio:
            fill_width = width // 2 - src_w // 2
            if fill_width > 0:
                res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
                res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))

    return np.array(res)


def get_shape_ceil(h, w):
    return math.ceil(((h * w) ** 0.5) / 64.0) * 64.0


def get_image_shape_ceil(im):
    H, W = im.shape[:2]
    return get_shape_ceil(H, W)


def set_image_shape_ceil(im, shape_ceil):
    shape_ceil = float(shape_ceil)

    H_origin, W_origin, _ = im.shape
    H, W = H_origin, W_origin
    
    for _ in range(256):
        current_shape_ceil = get_shape_ceil(H, W)
        if abs(current_shape_ceil - shape_ceil) < 0.1:
            break
        k = shape_ceil / current_shape_ceil
        H = int(round(float(H) * k / 64.0) * 64)
        W = int(round(float(W) * k / 64.0) * 64)

    if H == H_origin and W == W_origin:
        return im

    return resample_image(im, width=W, height=H)


def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y


def remove_empty_str(items, default=None):
    items = [x for x in items if x != ""]
    if len(items) == 0 and default is not None:
        return [default]
    return items


def join_prompts(*args, **kwargs):
    prompts = [str(x) for x in args if str(x) != ""]
    if len(prompts) == 0:
        return ""
    if len(prompts) == 1:
        return prompts[0]
    return ', '.join(prompts)


def generate_temp_filename(folder='./outputs/', extension='png'):
    current_time = datetime.datetime.now()
    date_string = current_time.strftime("%Y-%m-%d")
    time_string = current_time.strftime("%Y-%m-%d_%H-%M-%S")
    random_number = random.randint(1000, 9999)
    filename = f"{time_string}_{random_number}.{extension}"
    result = os.path.join(folder, date_string, filename)
    return date_string, os.path.abspath(os.path.realpath(result)), filename


def get_files_from_folder(folder_path, exensions=None, name_filter=None):
    if not os.path.isdir(folder_path):
        raise ValueError("Folder path is not a valid directory.")

    filenames = []

    for root, dirs, files in os.walk(folder_path):
        relative_path = os.path.relpath(root, folder_path)
        if relative_path == ".":
            relative_path = ""
        for filename in files:
            _, file_extension = os.path.splitext(filename)
            if (exensions == None or file_extension.lower() in exensions) and (name_filter == None or name_filter in _):
                path = os.path.join(relative_path, filename)
                filenames.append(path)

    return sorted(filenames, key=lambda x: -1 if os.sep in x else 1)