File size: 4,476 Bytes
18793b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import nodes
import folder_paths
from fcbh.cli_args import args

from PIL import Image
import numpy as np
import json
import os

MAX_RESOLUTION = nodes.MAX_RESOLUTION

class ImageCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",),
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "crop"

    CATEGORY = "image/transform"

    def crop(self, image, width, height, x, y):
        x = min(x, image.shape[2] - 1)
        y = min(y, image.shape[1] - 1)
        to_x = width + x
        to_y = height + y
        img = image[:,y:to_y, x:to_x, :]
        return (img,)

class RepeatImageBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "repeat"

    CATEGORY = "image/batch"

    def repeat(self, image, amount):
        s = image.repeat((amount, 1,1,1))
        return (s,)

class SaveAnimatedWEBP:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    methods = {"default": 4, "fastest": 0, "slowest": 6}
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"images": ("IMAGE", ),
                     "filename_prefix": ("STRING", {"default": "fcbh_backend"}),
                     "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
                     "lossless": ("BOOLEAN", {"default": True}),
                     "quality": ("INT", {"default": 80, "min": 0, "max": 100}),
                     "method": (list(s.methods.keys()),),
                     # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
                     },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
        method = self.methods.get(method, "aoeu")
        filename_prefix += self.prefix_append
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
        results = list()
        pil_images = []
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
            pil_images.append(img)

        metadata = None
        if not args.disable_metadata:
            metadata = pil_images[0].getexif()
            if prompt is not None:
                metadata[0x0110] = "prompt:{}".format(json.dumps(prompt))
            if extra_pnginfo is not None:
                inital_exif = 0x010f
                for x in extra_pnginfo:
                    metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x]))
                    inital_exif -= 1

        if num_frames == 0:
            num_frames = len(pil_images)

        c = len(pil_images)
        for i in range(0, c, num_frames):
            file = f"{filename}_{counter:05}_.webp"
            pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method)
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            })
            counter += 1

        animated = num_frames != 1
        return { "ui": { "images": results, "animated": (animated,) } }

NODE_CLASS_MAPPINGS = {
    "ImageCrop": ImageCrop,
    "RepeatImageBatch": RepeatImageBatch,
    "SaveAnimatedWEBP": SaveAnimatedWEBP,
}