Tanaymishra's picture
Upload 254 files
18793b8
raw
history blame
10.2 kB
import cv2
import numpy as np
import torch
def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
left, top, right, bot = bbox
width = right - left
height = bot - top
if preserve_aspect:
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
else:
width_increase = height_increase = increase_area
left = int(left - width_increase * width)
top = int(top - height_increase * height)
right = int(right + width_increase * width)
bot = int(bot + height_increase * height)
return (left, top, right, bot)
def get_valid_bboxes(bboxes, h, w):
left = max(bboxes[0], 0)
top = max(bboxes[1], 0)
right = min(bboxes[2], w)
bottom = min(bboxes[3], h)
return (left, top, right, bottom)
def align_crop_face_landmarks(img,
landmarks,
output_size,
transform_size=None,
enable_padding=True,
return_inverse_affine=False,
shrink_ratio=(1, 1)):
"""Align and crop face with landmarks.
The output_size and transform_size are based on width. The height is
adjusted based on shrink_ratio_h/shring_ration_w.
Modified from:
https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
Args:
img (Numpy array): Input image.
landmarks (Numpy array): 5 or 68 or 98 landmarks.
output_size (int): Output face size.
transform_size (ing): Transform size. Usually the four time of
output_size.
enable_padding (float): Default: True.
shrink_ratio (float | tuple[float] | list[float]): Shring the whole
face for height and width (crop larger area). Default: (1, 1).
Returns:
(Numpy array): Cropped face.
"""
lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
if isinstance(shrink_ratio, (float, int)):
shrink_ratio = (shrink_ratio, shrink_ratio)
if transform_size is None:
transform_size = output_size * 4
# Parse landmarks
lm = np.array(landmarks)
if lm.shape[0] == 5 and lm_type == 'retinaface_5':
eye_left = lm[0]
eye_right = lm[1]
mouth_avg = (lm[3] + lm[4]) * 0.5
elif lm.shape[0] == 5 and lm_type == 'dlib_5':
lm_eye_left = lm[2:4]
lm_eye_right = lm[0:2]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = lm[4]
elif lm.shape[0] == 68:
lm_eye_left = lm[36:42]
lm_eye_right = lm[42:48]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = (lm[48] + lm[54]) * 0.5
elif lm.shape[0] == 98:
lm_eye_left = lm[60:68]
lm_eye_right = lm[68:76]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = (lm[76] + lm[82]) * 0.5
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Get the oriented crop rectangle
# x: half width of the oriented crop rectangle
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
# norm with the hypotenuse: get the direction
x /= np.hypot(*x) # get the hypotenuse of a right triangle
rect_scale = 1 # TODO: you can edit it to get larger rect
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
# y: half height of the oriented crop rectangle
y = np.flipud(x) * [-1, 1]
x *= shrink_ratio[1] # width
y *= shrink_ratio[0] # height
# c: center
c = eye_avg + eye_to_mouth * 0.1
# quad: (left_top, left_bottom, right_bottom, right_top)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
# qsize: side length of the square
qsize = np.hypot(*x) * 2
quad_ori = np.copy(quad)
# Shrink, for large face
# TODO: do we really need shrink
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
h, w = img.shape[0:2]
rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
quad /= shrink
qsize /= shrink
# Crop
h, w = img.shape[0:2]
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
img = img[crop[1]:crop[3], crop[0]:crop[2], :]
quad -= crop[0:2]
# Pad
# pad: (width_left, height_top, width_right, height_bottom)
h, w = img.shape[0:2]
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w = img.shape[0:2]
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1],
np.float32(h - 1 - y) / pad[3]))
blur = int(qsize * 0.02)
if blur % 2 == 0:
blur += 1
blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
img = img.astype('float32')
img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.clip(img, 0, 255) # float32, [0, 255]
quad += pad[:2]
# Transform use cv2
h_ratio = shrink_ratio[0] / shrink_ratio[1]
dst_h, dst_w = int(transform_size * h_ratio), transform_size
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
cropped_face = cv2.warpAffine(
img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
if output_size < transform_size:
cropped_face = cv2.resize(
cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
if return_inverse_affine:
dst_h, dst_w = int(output_size * h_ratio), output_size
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(
quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
inverse_affine = cv2.invertAffineTransform(affine_matrix)
else:
inverse_affine = None
return cropped_face, inverse_affine
def paste_face_back(img, face, inverse_affine):
h, w = img.shape[0:2]
face_h, face_w = face.shape[0:2]
inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
mask = np.ones((face_h, face_w, 3), dtype=np.float32)
inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
# remove the black borders
inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
inv_restored_remove_border = inv_mask_erosion * inv_restored
total_face_area = np.sum(inv_mask_erosion) // 3
# compute the fusion edge based on the area of face
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
# float32, [0, 255]
return img
if __name__ == '__main__':
import os
from fooocus_extras.facexlib.detection import init_detection_model
from fooocus_extras.facexlib.utils.face_restoration_helper import get_largest_face
from fooocus_extras.facexlib.visualization import visualize_detection
img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png'
img_name = os.splitext(os.path.basename(img_path))[0]
# initialize model
det_net = init_detection_model('retinaface_resnet50', half=False)
img_ori = cv2.imread(img_path)
h, w = img_ori.shape[0:2]
# if larger than 800, scale it
scale = max(h / 800, w / 800)
if scale > 1:
img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR)
with torch.no_grad():
bboxes = det_net.detect_faces(img, 0.97)
if scale > 1:
bboxes *= scale # the score is incorrect
bboxes = get_largest_face(bboxes, h, w)[0]
visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png')
landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)])
cropped_face, inverse_affine = align_crop_face_landmarks(
img_ori,
landmarks,
output_size=512,
transform_size=None,
enable_padding=True,
return_inverse_affine=True,
shrink_ratio=(1, 1))
cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face)
img = paste_face_back(img_ori, cropped_face, inverse_affine)
cv2.imwrite(f'tmp/{img_name}_back.png', img)