Spaces:
Runtime error
Runtime error
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, modeling_utils | |
from .utils import load_torch_file, transformers_convert, common_upscale | |
import os | |
import torch | |
import contextlib | |
import fcbh.ops | |
import fcbh.model_patcher | |
import fcbh.model_management | |
import fcbh.utils | |
def clip_preprocess(image, size=224): | |
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype) | |
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype) | |
scale = (size / min(image.shape[1], image.shape[2])) | |
image = torch.nn.functional.interpolate(image.movedim(-1, 1), size=(round(scale * image.shape[1]), round(scale * image.shape[2])), mode="bicubic", antialias=True) | |
h = (image.shape[2] - size)//2 | |
w = (image.shape[3] - size)//2 | |
image = image[:,:,h:h+size,w:w+size] | |
image = torch.clip((255. * image), 0, 255).round() / 255.0 | |
return (image - mean.view([3,1,1])) / std.view([3,1,1]) | |
class ClipVisionModel(): | |
def __init__(self, json_config): | |
config = CLIPVisionConfig.from_json_file(json_config) | |
self.load_device = fcbh.model_management.text_encoder_device() | |
offload_device = fcbh.model_management.text_encoder_offload_device() | |
self.dtype = torch.float32 | |
if fcbh.model_management.should_use_fp16(self.load_device, prioritize_performance=False): | |
self.dtype = torch.float16 | |
with fcbh.ops.use_fcbh_ops(offload_device, self.dtype): | |
with modeling_utils.no_init_weights(): | |
self.model = CLIPVisionModelWithProjection(config) | |
self.model.to(self.dtype) | |
self.patcher = fcbh.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) | |
def load_sd(self, sd): | |
return self.model.load_state_dict(sd, strict=False) | |
def encode_image(self, image): | |
fcbh.model_management.load_model_gpu(self.patcher) | |
pixel_values = clip_preprocess(image.to(self.load_device)) | |
if self.dtype != torch.float32: | |
precision_scope = torch.autocast | |
else: | |
precision_scope = lambda a, b: contextlib.nullcontext(a) | |
with precision_scope(fcbh.model_management.get_autocast_device(self.load_device), torch.float32): | |
outputs = self.model(pixel_values=pixel_values, output_hidden_states=True) | |
for k in outputs: | |
t = outputs[k] | |
if t is not None: | |
if k == 'hidden_states': | |
outputs["penultimate_hidden_states"] = t[-2].cpu() | |
outputs["hidden_states"] = None | |
else: | |
outputs[k] = t.cpu() | |
return outputs | |
def convert_to_transformers(sd, prefix): | |
sd_k = sd.keys() | |
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: | |
keys_to_replace = { | |
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", | |
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", | |
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", | |
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", | |
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", | |
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", | |
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", | |
} | |
for x in keys_to_replace: | |
if x in sd_k: | |
sd[keys_to_replace[x]] = sd.pop(x) | |
if "{}proj".format(prefix) in sd_k: | |
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) | |
sd = transformers_convert(sd, prefix, "vision_model.", 48) | |
return sd | |
def load_clipvision_from_sd(sd, prefix="", convert_keys=False): | |
if convert_keys: | |
sd = convert_to_transformers(sd, prefix) | |
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd: | |
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json") | |
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: | |
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") | |
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: | |
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") | |
else: | |
return None | |
clip = ClipVisionModel(json_config) | |
m, u = clip.load_sd(sd) | |
if len(m) > 0: | |
print("extra keys clip vision:", m) | |
u = set(u) | |
keys = list(sd.keys()) | |
for k in keys: | |
if k not in u: | |
t = sd.pop(k) | |
del t | |
return clip | |
def load(ckpt_path): | |
sd = load_torch_file(ckpt_path) | |
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd: | |
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True) | |
else: | |
return load_clipvision_from_sd(sd) | |