Update app.py
Browse files
app.py
CHANGED
|
@@ -8,20 +8,34 @@ from PIL import Image
|
|
| 8 |
from torch.utils.data import Dataset, DataLoader
|
| 9 |
import streamlit as st
|
| 10 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
|
|
|
| 12 |
feature_extractor = SegformerFeatureExtractor.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
|
| 13 |
segformer_model = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
|
| 14 |
|
| 15 |
-
# Inference function
|
| 16 |
def segment_image(image):
|
| 17 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 18 |
outputs = segformer_model(**inputs)
|
| 19 |
segmentation = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
|
| 20 |
return segmentation
|
| 21 |
|
| 22 |
-
#
|
| 23 |
iface = gr.Interface(fn=segment_image, inputs=gr.Image(type="pil"), outputs="image")
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# Function to extract zip files
|
| 27 |
def extract_zip(zip_file, extract_to):
|
|
|
|
| 8 |
from torch.utils.data import Dataset, DataLoader
|
| 9 |
import streamlit as st
|
| 10 |
import gradio as gr
|
| 11 |
+
import os
|
| 12 |
+
import zipfile
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
|
| 16 |
+
from transformers import ResNetForImageClassification, AdamW
|
| 17 |
+
from PIL import Image
|
| 18 |
+
from torch.utils.data import Dataset, DataLoader
|
| 19 |
+
import streamlit as st
|
| 20 |
+
import gradio as gr
|
| 21 |
|
| 22 |
+
# Load feature extractor and model
|
| 23 |
feature_extractor = SegformerFeatureExtractor.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
|
| 24 |
segformer_model = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
|
| 25 |
|
| 26 |
+
# Inference function for segmentation
|
| 27 |
def segment_image(image):
|
| 28 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 29 |
outputs = segformer_model(**inputs)
|
| 30 |
segmentation = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
|
| 31 |
return segmentation
|
| 32 |
|
| 33 |
+
# Gradio interface at the end of the script
|
| 34 |
iface = gr.Interface(fn=segment_image, inputs=gr.Image(type="pil"), outputs="image")
|
| 35 |
+
|
| 36 |
+
# Specify a custom port if needed to avoid conflicts (optional)
|
| 37 |
+
iface.launch(server_port=7861) # Change port if 7860 is occupied
|
| 38 |
+
|
| 39 |
|
| 40 |
# Function to extract zip files
|
| 41 |
def extract_zip(zip_file, extract_to):
|