from gradio_client import Client import numpy as np import gradio as gr import requests import json import dotenv import soundfile as sf import time import textwrap from PIL import Image from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os import uuid import optimum welcome_message = """ # 👋🏻Welcome to ⚕🗣️😷TruEra - MultiMed ⚕🗣️😷 🗣️📝 This is an accessible and multimodal tool optimized using TruEra! We evaluated several configurations, prompts, and models to optimize this application. ### How To Use ⚕🗣️😷TruEra - MultiMed⚕: 🗣️📝Interact with ⚕🗣️😷TruEra - MultiMed⚕ in any language using image, audio or text. ⚕🗣️😷TruEra - MultiMed is an accessible application 📚🌟💼 that uses [Qwen/Qwen-1_8B-Chat](https://huggingface.co/Qwen/Qwen-1_8B-Chat) and [Tonic1/Official-Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval w/ [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/hf-seamless-m4t-large) for audio translation & accessibility. do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷TruEra MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space ### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" """ languages = { "English": "eng", "Modern Standard Arabic": "arb", "Bengali": "ben", "Catalan": "cat", "Czech": "ces", "Mandarin Chinese": "cmn", "Welsh": "cym", "Danish": "dan", "German": "deu", "Estonian": "est", "Finnish": "fin", "French": "fra", "Hindi": "hin", "Indonesian": "ind", "Italian": "ita", "Japanese": "jpn", "Korean": "kor", "Maltese": "mlt", "Dutch": "nld", "Western Persian": "pes", "Polish": "pol", "Portuguese": "por", "Romanian": "ron", "Russian": "rus", "Slovak": "slk", "Spanish": "spa", "Swedish": "swe", "Swahili": "swh", "Telugu": "tel", "Tagalog": "tgl", "Thai": "tha", "Turkish": "tur", "Ukrainian": "ukr", "Urdu": "urd", "Northern Uzbek": "uzn", "Vietnamese": "vie" } # Global variables to hold component references components = {} dotenv.load_dotenv() seamless_client = Client("https://facebook-seamless-m4t-v2-large.hf.space/--replicas/2bmbx/") #TruEra HuggingFace_Token = os.getenv("HuggingFace_Token") hf_token = os.getenv("HuggingFace_Token") device = "cuda" if torch.cuda.is_available() else "cpu" image_description = "" # audio_output = "" # global markdown_output # global audio_output def check_hallucination(assertion, citation): print("Entering check_hallucination function") api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" header = {"Authorization": f"Bearer {hf_token}"} payload = {"inputs": f"{assertion} [SEP] {citation}"} response = requests.post(api_url, headers=header, json=payload, timeout=120) output = response.json() output = output[0][0]["score"] print(f"check_hallucination output: {output}") return f"**hallucination score:** {output}" # Define the API parameters vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" headers = {"Authorization": f"Bearer {hf_token}"} # Function to query the API def query(payload): print("Entering query function") response = requests.post(vapi_url, headers=headers, json=payload) print(f"API response: {response.json()}") return response.json() # Function to evaluate hallucination def evaluate_hallucination(input1, input2): print("Entering evaluate_hallucination function") combined_input = f"{input1}[SEP]{input2}" output = query({"inputs": combined_input}) score = output[0][0]['score'] if score < 0.5: label = f"🔴 High risk. Score: {score:.2f}" else: label = f"🟢 Low risk. Score: {score:.2f}" print(f"evaluate_hallucination label: {label}") return label def save_audio(audio_input, output_dir="saved_audio"): if not os.path.exists(output_dir): os.makedirs(output_dir) # Extract sample rate and audio data sample_rate, audio_data = audio_input # Generate a unique file name file_name = f"audio_{int(time.time())}.wav" file_path = os.path.join(output_dir, file_name) # Save the audio file sf.write(file_path, audio_data, sample_rate) return file_path def save_image(image_input, output_dir="saved_images"): print("Entering save_image function") if not os.path.exists(output_dir): os.makedirs(output_dir) if isinstance(image_input, np.ndarray): image = Image.fromarray(image_input) file_name = f"image_{int(time.time())}.png" file_path = os.path.join(output_dir, file_name) image.save(file_path) print(f"Image saved at: {file_path}") return file_path else: raise ValueError("Invalid image input type") def process_image(image_file_path): print("Entering process_image function") client = Client("https://tonic1-official-qwen-vl-chat.hf.space/--replicas/4t5dh/") # TruEra try: result = client.predict( "Describe this image in detail, identify every detail in this image. Describe the image the best you can.", image_file_path, fn_index=0 ) print(f"Image processing result: {result}") return result except Exception as e: print(f"Error in process_image: {e}") return f"Error occurred during image processing: {e}" def process_speech(audio_input, source_language, target_language="English"): print("Entering process_speech function") if audio_input is None: return "No audio input provided." try: result = seamless_client.predict( audio_input, source_language, target_language, api_name="/s2tt" ) print(f"Speech processing result: {result}") return result except Exception as e: print(f"Error in process_speech: {str(e)}") return f"Error in speech processing: {str(e)}" def convert_text_to_speech(input_text, source_language, target_language): print("Entering convert_text_to_speech function") try: result = seamless_client.predict( input_text, source_language, target_language, api_name="/t2st" ) audio_file_path = result[0] if result else None translated_text = result[1] if result else "" print(f"Text-to-speech conversion result: Audio file path: {audio_file_path}, Translated text: {translated_text}") return audio_file_path, translated_text except Exception as e: print(f"Error in convert_text_to_speech: {str(e)}") return None, f"Error in text-to-speech conversion: {str(e)}" def query_vectara(text): user_message = text customer_id = os.getenv('CUSTOMER_ID') corpus_id = os.getenv('CORPUS_ID') api_key = os.getenv('API_KEY') # Define the headers api_key_header = { "customer-id": customer_id, "x-api-key": api_key } # Define the request body in the structure provided in the example request_body = { "query": [ { "query": user_message, "queryContext": "", "start": 1, "numResults": 25, "contextConfig": { "charsBefore": 0, "charsAfter": 0, "sentencesBefore": 2, "sentencesAfter": 2, "startTag": "%START_SNIPPET%", "endTag": "%END_SNIPPET%", }, "rerankingConfig": { "rerankerId": 272725718, "mmrConfig": { "diversityBias": 0.35 } }, "corpusKey": [ { "customerId": customer_id, "corpusId": corpus_id, "semantics": 0, "metadataFilter": "", "lexicalInterpolationConfig": { "lambda": 0 }, "dim": [] } ], "summary": [ { "maxSummarizedResults": 5, "responseLang": "auto", "summarizerPromptName": "vectara-summary-ext-v1.2.0" } ] } ] } # Make the API request using Gradio response = requests.post( "https://api.vectara.io/v1/query", json=request_body, # Use json to automatically serialize the request body verify=True, headers=api_key_header ) if response.status_code == 200: query_data = response.json() if query_data: sources_info = [] # Extract the summary. summary = query_data['responseSet'][0]['summary'][0]['text'] # Iterate over all response sets for response_set in query_data.get('responseSet', []): # Extract sources # Limit to top 5 sources. for source in response_set.get('response', [])[:5]: source_metadata = source.get('metadata', []) source_info = {} for metadata in source_metadata: metadata_name = metadata.get('name', '') metadata_value = metadata.get('value', '') if metadata_name == 'title': source_info['title'] = metadata_value elif metadata_name == 'author': source_info['author'] = metadata_value elif metadata_name == 'pageNumber': source_info['page number'] = metadata_value if source_info: sources_info.append(source_info) result = {"summary": summary, "sources": sources_info} return f"{json.dumps(result, indent=2)}" else: return "No data found in the response." else: return f"Error: {response.status_code}" def wrap_text(text, width=90): print("Wrapping text...") lines = text.split('\n') wrapped_lines = [textwrap.fill(line, width=width) for line in lines] wrapped_text = '\n'.join(wrapped_lines) return wrapped_text tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True) #TruEra model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True).eval() class ChatBot: def __init__(self): self.history = None def predict(self, user_input, system_prompt=""): print("Generating prediction...") response, self.history = model.chat(tokenizer, user_input, history=self.history, system=system_prompt) return response bot = ChatBot() def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): print("Processing multimodal prompt...") return bot.predict(user_input, system_prompt) def process_summary_with_qwen(summary): print("Processing summary with Qwen...") system_prompt = "You are a medical instructor. Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description." response_text = bot.predict(summary, system_prompt) return response_text def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None): try: print("Processing and querying...") combined_text = "" markdown_output = "" image_text = "" print(f"Image Input Type: {type(image_input)}, Audio Input Type: {type(audio_input)}") if image_input is not None: print("Processing image input...") image_file_path = save_image(image_input) image_text = process_image(image_file_path) combined_text += "\n\n**Image Input:**\n" + image_text elif audio_input is not None: print("Processing audio input...") sample_rate, audio_data = audio_input audio_file_path = save_audio(audio_input) audio_text = process_speech(audio_file_path, input_language, "English") combined_text += "\n\n**Audio Input:**\n" + audio_text elif text_input is not None and text_input.strip(): print("Processing text input...") combined_text += "The user asks the query above to his health adviser: " + text_input else: return "Error: Please provide some input (text, audio, or image)." if image_text: markdown_output += "\n### Original Image Description\n" markdown_output += image_text + "\n" print("Querying Vectara...") vectara_response_json = query_vectara(combined_text) vectara_response = json.loads(vectara_response_json) summary = vectara_response.get('summary', 'No summary available') sources_info = vectara_response.get('sources', []) markdown_output = "### Vectara Response Summary\n" markdown_output += f"* **Summary**: {summary}\n" markdown_output += "### Sources Information\n" for source in sources_info: markdown_output += f"* {source}\n" final_response = process_summary_with_qwen(summary) print("Converting text to speech...") target_language = "English" audio_output, translated_text = convert_text_to_speech(final_response, target_language, input_language) print("Evaluating hallucination...") try: hallucination_label = evaluate_hallucination(final_response, summary) except Exception as e: print(f"Error in hallucination evaluation: {e}") hallucination_label = "Evaluation skipped due to the model loading. For evaluation results, please try again in 29 minutes." markdown_output += "\n### Processed Summary with Qwen\n" markdown_output += final_response + "\n" markdown_output += "\n### Hallucination Evaluation\n" markdown_output += f"* **Label**: {hallucination_label}\n" markdown_output += "\n### Translated Text\n" markdown_output += translated_text + "\n" return markdown_output, audio_output except Exception as e: print(f"Error occurred: {e}") return f"Error occurred during processing: {e}.", None def clear(): return "English", None, None, "", None def create_interface(): with gr.Blocks(theme='ParityError/Anime') as interface: # Display the welcome message gr.Markdown(welcome_message) # Extract the full names of the languages language_names = list(languages.keys()) # Add a 'None' or similar option to represent no selection input_language_options = ["None"] + language_names # Create a dropdown for language selection input_language = gr.Dropdown(input_language_options, label="Select the language", value="English", interactive=True) with gr.Accordion("Use Voice", open=False) as voice_accordion: audio_input = gr.Audio(label="Speak") audio_output = gr.Markdown(label="Output text") # Markdown component for audio gr.Examples([["audio1.wav"], ["audio2.wav"], ], inputs=[audio_input]) with gr.Accordion("Use a Picture", open=False) as picture_accordion: image_input = gr.Image(label="Upload image") image_output = gr.Markdown(label="Output text") # Markdown component for image gr.Examples([["image1.png"], ["image2.jpeg"], ["image3.jpeg"], ], inputs=[image_input]) with gr.Accordion("MultiMed", open=False) as multimend_accordion: text_input = gr.Textbox(label="Use Text", lines=3, placeholder="I have had a sore throat and phlegm for a few days and now my cough has gotten worse!") gr.Examples([ ["What is the proper treatment for buccal herpes?"], ["I have had a sore throat and hoarse voice for several days and now a strong cough recently "], ["How does cellular metabolism work TCA cycle"], ["What special care must be provided to children with chicken pox?"], ["When and how often should I wash my hands?"], ["بکل ہرپس کا صحیح علاج کیا ہے؟"], ["구강 헤르페스의 적절한 치료법은 무엇입니까?"], ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"], ], inputs=[text_input]) text_output = gr.Markdown(label="MultiMed") audio_output = gr.Audio(label="Audio Out", type="filepath") text_button = gr.Button("Use MultiMed") text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, audio_output]) clear_button = gr.Button("Clear") clear_button.click(clear, inputs=[], outputs=[input_language, audio_input, image_input, text_output, audio_output]) return interface app = create_interface() app.launch(show_error=True, debug=True)