File size: 6,977 Bytes
70a42a8 cac8b0e 70a42a8 d0aa198 cac8b0e 70a42a8 cac8b0e d0aa198 70a42a8 cac8b0e 70a42a8 cac8b0e b81f1bb 70a42a8 d0aa198 70a42a8 36c12ab 70a42a8 cac8b0e 70a42a8 cac8b0e d0aa198 cac8b0e d0aa198 cac8b0e d0aa198 cac8b0e d0aa198 cac8b0e d0aa198 4a90a27 70a42a8 d0aa198 386506a cac8b0e 2e60cd2 70a42a8 cac8b0e ae48b77 cac8b0e d0aa198 cac8b0e 70a42a8 d0aa198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import re
import copy
from pathlib import Path
import secrets
import torch
from PIL import Image, ImageDraw
model_name = "qwen/Qwen-VL-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained(model_name, trust_remote_code=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
task_history = []
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』​``【oaicite:0】``​〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
def save_image(image_file, upload_dir: str) -> str:
Path(upload_dir).mkdir(parents=True, exist_ok=True)
filename = secrets.token_hex(10) + Path(image_file.name).suffix
file_path = Path(upload_dir) / filename
with open(image_file, "rb") as f_input, open(file_path, "wb") as f_output:
f_output.write(f_input.read())
return str(file_path)
def clean_response(response: str) -> str:
response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip()
return response
def chat_with_model(image_path=None, text_query=None, history=None):
# Modify this function to use 'history' if your model requires it
query_elements = []
if image_path:
query_elements.append({'image': image_path})
if text_query:
query_elements.append({'text': text_query})
# Add history processing here if needed
query = tokenizer.from_list_format(query_elements)
tokenized_inputs = tokenizer(query, return_tensors='pt').to(device)
output = model.generate(**tokenized_inputs)
response = tokenizer.decode(output[0], skip_special_tokens=True)
cleaned_response = clean_response(response)
return cleaned_response
def draw_boxes(image_path, response):
image = Image.open(image_path)
draw = ImageDraw.Draw(image)
boxes = re.findall(r'<box>\((\d+),(\d+)\),\((\d+),(\d+)\)</box>', response)
for box in boxes:
x1, y1, x2, y2 = map(int, box)
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
return image
def process_input(text=None, file=None, task_history=None):
if task_history is None:
task_history = []
image_path = None
if file is not None:
image_path = save_image(file, "uploaded_images")
response = chat_with_model(image_path=image_path, text_query=text, history=task_history)
task_history.append((text, response))
if "<box>" in response:
if image_path:
image_with_boxes = draw_boxes(image_path, response)
image_with_boxes_path = image_path.replace(".jpg", "_boxed.jpg")
image_with_boxes.save(image_with_boxes_path)
return [("bot", response), "image", image_with_boxes_path], task_history
else:
return [("bot", response), "text", None], task_history
else:
# Clean the response if it contains any box-like annotations
clean_response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip()
return [("bot", clean_response)], task_history
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""
# 🙋🏻♂️欢迎来到🌟Tonic 的🦆Qwen-VL-Chat🤩Bot!🚀
# 🙋🏻♂️Welcome toTonic's Qwen-VL-Chat Bot!
该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。
Qwen-VL-Chat 是一种多模式输入模型。 您可以使用此空间来测试当前模型 [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) 您也可以使用 🧑🏻🚀qwen/Qwen-VL -通过克隆这个空间来聊天🚀。 🧬🔬🔍 只需点击这里:[重复空间](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
加入我们:🌟TeamTonic🌟总是在制作很酷的演示! 在 👻Discord 上加入我们活跃的构建者🛠️社区:[Discord](https://discord.gg/nXx5wbX9) 在 🤗Huggingface 上:[TeamTonic](https://huggingface.co/TeamTonic) 和 [MultiTransformer](https:/ /huggingface.co/MultiTransformer) 在 🌐Github 上:[Polytonic](https://github.com/tonic-ai) 并为 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) 做出贡献 )
This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use qwen/Qwen-VL-Chat🚀 by cloning this space. Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
Join us: TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
""")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(label='Qwen-VL-Chat')
with gr.Column(scale=1):
with gr.Row():
query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
file_upload = gr.File(label="Upload Image")
submit_btn = gr.Button("Submit")
task_history = gr.State([])
submit_btn.click(
fn=process_input,
inputs=[query, file_upload, task_history],
outputs=[chatbot, task_history]
)
gr.Markdown("""
注意:此演示受 Qwen-VL 原始许可证的约束。我们强烈建议用户不要故意生成或允许他人故意生成有害内容,
包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .)
Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.)
""")
demo.queue().launch()
if __name__ == "__main__":
demo.launch()
|