Spaces:
Configuration error
Configuration error
File size: 11,721 Bytes
fd5f698 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
"""
Based on the implementation from:
https://huggingface.co/spaces/fffiloni/lama-video-watermark-remover/tree/main
Modules were adapted by Hans Brouwer to only support the final configuration of the model uploaded here:
https://huggingface.co/akhaliq/lama
Apache License 2.0: https://github.com/advimman/lama/blob/main/LICENSE
@article{suvorov2021resolution,
title={Resolution-robust Large Mask Inpainting with Fourier Convolutions},
author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor},
journal={arXiv preprint arXiv:2109.07161},
year={2021}
}
"""
import os
import sys
from urllib.request import urlretrieve
import torch
from einops import rearrange
from PIL import Image
from torch import nn
from torch.nn import functional as F
from torchvision.transforms.functional import to_tensor
from tqdm import tqdm
from train import export_to_video
LAMA_URL = "https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt"
LAMA_PATH = "models/lama.ckpt"
def download_progress(t):
last_b = [0]
def update_to(b=1, bsize=1, tsize=None):
if tsize is not None:
t.total = tsize
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return update_to
def download(url, path):
with tqdm(unit="B", unit_scale=True, unit_divisor=1024, miniters=1, desc=path) as t:
urlretrieve(url, filename=path, reporthook=download_progress(t), data=None)
class FourierUnit(nn.Module):
def __init__(self, in_channels, out_channels, groups=1):
super(FourierUnit, self).__init__()
self.groups = groups
self.conv_layer = torch.nn.Conv2d(
in_channels=in_channels * 2,
out_channels=out_channels * 2,
kernel_size=1,
stride=1,
padding=0,
groups=self.groups,
bias=False,
)
self.bn = torch.nn.BatchNorm2d(out_channels * 2)
self.relu = torch.nn.ReLU(inplace=True)
def forward(self, x):
batch = x.shape[0]
# (batch, c, h, w/2+1, 2)
fft_dim = (-2, -1)
ffted = torch.fft.rfftn(x, dim=fft_dim, norm="ortho")
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
ffted = ffted.view((batch, -1) + ffted.size()[3:])
ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
ffted = self.relu(self.bn(ffted))
# (batch,c, t, h, w/2+1, 2)
ffted = ffted.view((batch, -1, 2) + ffted.size()[2:]).permute(0, 1, 3, 4, 2).contiguous()
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
ifft_shape_slice = x.shape[-2:]
output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm="ortho")
return output
class SpectralTransform(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, groups=1):
super(SpectralTransform, self).__init__()
self.stride = stride
if stride == 2:
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
else:
self.downsample = nn.Identity()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU(inplace=True),
)
self.fu = FourierUnit(out_channels // 2, out_channels // 2, groups)
self.conv2 = torch.nn.Conv2d(out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
def forward(self, x):
x = self.downsample(x)
x = self.conv1(x)
output = self.fu(x)
output = self.conv2(x + output)
return output
class FFC(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
ratio_gin,
ratio_gout,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False,
padding_type="reflect",
gated=False,
):
super(FFC, self).__init__()
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
self.stride = stride
in_cg = int(in_channels * ratio_gin)
in_cl = in_channels - in_cg
out_cg = int(out_channels * ratio_gout)
out_cl = out_channels - out_cg
self.ratio_gin = ratio_gin
self.ratio_gout = ratio_gout
self.global_in_num = in_cg
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
self.convl2l = module(
in_cl, out_cl, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type
)
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
self.convl2g = module(
in_cl, out_cg, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type
)
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
self.convg2l = module(
in_cg, out_cl, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type
)
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
self.convg2g = module(in_cg, out_cg, stride, 1 if groups == 1 else groups // 2)
self.gated = gated
module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
self.gate = module(in_channels, 2, 1)
def forward(self, x):
x_l, x_g = x if type(x) is tuple else (x, 0)
out_xl, out_xg = 0, 0
if self.gated:
total_input_parts = [x_l]
if torch.is_tensor(x_g):
total_input_parts.append(x_g)
total_input = torch.cat(total_input_parts, dim=1)
gates = torch.sigmoid(self.gate(total_input))
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
else:
g2l_gate, l2g_gate = 1, 1
if self.ratio_gout != 1:
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
if self.ratio_gout != 0:
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
return out_xl, out_xg
class FFC_BN_ACT(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
ratio_gin=0,
ratio_gout=0,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False,
norm_layer=nn.BatchNorm2d,
activation_layer=nn.ReLU,
):
super(FFC_BN_ACT, self).__init__()
self.ffc = FFC(
in_channels, out_channels, kernel_size, ratio_gin, ratio_gout, stride, padding, dilation, groups, bias
)
lnorm = nn.Identity if ratio_gout == 1 else norm_layer
gnorm = nn.Identity if ratio_gout == 0 else norm_layer
global_channels = int(out_channels * ratio_gout)
self.bn_l = lnorm(out_channels - global_channels)
self.bn_g = gnorm(global_channels)
lact = nn.Identity if ratio_gout == 1 else activation_layer
gact = nn.Identity if ratio_gout == 0 else activation_layer
self.act_l = lact(inplace=True)
self.act_g = gact(inplace=True)
def forward(self, x):
x_l, x_g = self.ffc(x)
x_l = self.act_l(self.bn_l(x_l))
x_g = self.act_g(self.bn_g(x_g))
return x_l, x_g
class FFCResnetBlock(nn.Module):
def __init__(self, dim, ratio_gin, ratio_gout):
super().__init__()
self.conv1 = FFC_BN_ACT(
dim, dim, kernel_size=3, padding=1, dilation=1, ratio_gin=ratio_gin, ratio_gout=ratio_gout
)
self.conv2 = FFC_BN_ACT(
dim, dim, kernel_size=3, padding=1, dilation=1, ratio_gin=ratio_gin, ratio_gout=ratio_gout
)
def forward(self, x):
x_l, x_g = x if type(x) is tuple else (x, 0)
id_l, id_g = x_l, x_g
x_l, x_g = self.conv1((x_l, x_g))
x_l, x_g = self.conv2((x_l, x_g))
x_l, x_g = id_l + x_l, id_g + x_g
out = x_l, x_g
return out
class ConcatTupleLayer(nn.Module):
def forward(self, x):
assert isinstance(x, tuple)
x_l, x_g = x
assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
if not torch.is_tensor(x_g):
return x_l
return torch.cat(x, dim=1)
class LargeMaskInpainting(nn.Module):
def __init__(self, input_nc=4, output_nc=3, ngf=64, n_downsampling=3, n_blocks=18, max_features=1024):
super().__init__()
model = [nn.ReflectionPad2d(3), FFC_BN_ACT(input_nc, ngf, kernel_size=7)]
### downsample
for i in range(n_downsampling):
mult = 2**i
model += [
FFC_BN_ACT(
min(max_features, ngf * mult),
min(max_features, ngf * mult * 2),
kernel_size=3,
stride=2,
padding=1,
ratio_gout=0.75 if i == n_downsampling - 1 else 0,
)
]
### resnet blocks
for i in range(n_blocks):
cur_resblock = FFCResnetBlock(min(max_features, ngf * 2**n_downsampling), ratio_gin=0.75, ratio_gout=0.75)
model += [cur_resblock]
model += [ConcatTupleLayer()]
### upsample
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += [
nn.ConvTranspose2d(
min(max_features, ngf * mult),
min(max_features, int(ngf * mult / 2)),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
nn.BatchNorm2d(min(max_features, int(ngf * mult / 2))),
nn.ReLU(True),
]
model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7), nn.Sigmoid()]
self.model = nn.Sequential(*model)
def forward(self, img, mask):
masked_img = img * (1 - mask)
masked_img = torch.cat([masked_img, mask], dim=1)
pred = self.model(masked_img)
inpainted = mask * pred + (1 - mask) * img
return inpainted
@torch.inference_mode()
def inpaint_watermark(imgs):
if not os.path.exists(LAMA_PATH):
download(LAMA_URL, LAMA_PATH)
mask = to_tensor(Image.open("./utils/mask.png").convert("L")).unsqueeze(0).to(imgs.device)
if mask.shape[-1] != imgs.shape[-1]:
mask = F.interpolate(mask, size=(imgs.shape[2], imgs.shape[3]), mode="nearest")
mask = mask.expand(imgs.shape[0], 1, mask.shape[2], mask.shape[3])
model = LargeMaskInpainting().to(imgs.device)
state_dict = torch.load(LAMA_PATH, map_location=imgs.device)["state_dict"]
g_dict = {k.replace("generator.", ""): v for k, v in state_dict.items() if k.startswith("generator")}
model.load_state_dict(g_dict)
inpainted = model.forward(imgs, mask)
return inpainted
if __name__ == "__main__":
import decord
decord.bridge.set_bridge("torch")
if len(sys.argv) < 2:
print("Usage: python -m utils.lama <path/to/video>")
sys.exit(1)
video_path = sys.argv[1]
out_path = video_path.replace(".mp4", " inpainted.mp4")
vr = decord.VideoReader(video_path)
fps = vr.get_avg_fps()
video = rearrange(vr[:], "f h w c -> f c h w").div(255)
inpainted = inpaint_watermark(video)
inpainted = rearrange(inpainted, "f c h w -> f h w c").clamp(0, 1).mul(255).byte().cpu().numpy()
export_to_video(inpainted, out_path, fps)
|