import os from io import BytesIO import base64 from functools import partial from PIL import Image, ImageOps import gradio as gr from makeavid_sd.inference import ( InferenceUNetPseudo3D, jnp, SCHEDULERS ) print(os.environ.get('XLA_PYTHON_CLIENT_PREALLOCATE', 'NotSet')) print(os.environ.get('XLA_PYTHON_CLIENT_ALLOCATOR', 'NotSet')) _preheat: bool = False _seen_compilations = set() _model = InferenceUNetPseudo3D( model_path = '/mnt/work1/make_a_vid/makeavid-space/model/model', dtype = jnp.float16, hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None) ) if _model.failed != False: trace = f'```{_model.failed}```' with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo: exception = gr.Markdown(trace) demo.launch() _output_formats = ( 'webp', 'gif' ) # gradio is illiterate. type hints make it go poopoo in pantsu. def generate( prompt = 'An elderly man having a great time in the park.', neg_prompt = '', hint_image = None, inference_steps = 20, cfg = 15.0, cfg_image = 9.0, seed = 0, fps = 24, num_frames = 24, height = 512, width = 512, scheduler_type = 'DPM', output_format = 'webp' ) -> str: num_frames = int(num_frames) inference_steps = int(inference_steps) height = int(height) width = int(width) height = (height // 64) * 64 width = (width // 64) * 64 cfg = max(cfg, 1.0) cfg_image = max(cfg_image, 1.0) seed = int(seed) if seed < 0: seed = -seed if hint_image is not None: if hint_image.mode != 'RGB': hint_image = hint_image.convert('RGB') if hint_image.size != (width, height): hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS) if scheduler_type not in SCHEDULERS: scheduler_type = 'DPM' output_format = output_format.lower() if output_format not in _output_formats: output_format = 'webp' mask_image = None images = _model.generate( prompt = [prompt] * _model.device_count, neg_prompt = neg_prompt, hint_image = hint_image, mask_image = mask_image, inference_steps = inference_steps, cfg = cfg, cfg_image = cfg_image, height = height, width = width, num_frames = num_frames, seed = seed, scheduler_type = scheduler_type ) _seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames)) buffer = BytesIO() images[1].save( buffer, format = output_format, save_all = True, append_images = images[2:], loop = 0, duration = round(1000 / fps), allow_mixed = True ) data = base64.b64encode(buffer.getvalue()).decode() buffer.close() data = f'data:image/{output_format};base64,' + data return data def check_if_compiled(hint_image, inference_steps, height, width, num_frames, scheduler_type, message): height = int(height) width = int(width) inference_steps = int(inference_steps) height = (height // 64) * 64 width = (width // 64) * 64 if (hint_image is None, inference_steps, height, width, num_frames, scheduler_type) in _seen_compilations: return '' else: return f"""{message}""" if _preheat: print('\npreheating the oven') generate( prompt = 'preheating the oven', neg_prompt = '', image = None, inference_steps = 20, cfg = 12.0, seed = 0 ) print('Entertaining the guests with sailor songs played on an old piano.') dada = generate( prompt = 'Entertaining the guests with sailor songs played on an old harmonium.', neg_prompt = '', image = Image.new('RGB', size = (512, 512), color = (0, 0, 0)), inference_steps = 20, cfg = 12.0, seed = 0 ) print('dinner is ready\n') with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo: variant = 'panel' with gr.Row(): with gr.Column(): intro1 = gr.Markdown(""" # Make-A-Video Stable Diffusion JAX We have extended a pretrained LDM inpainting image generation model with temporal convolutions and attention. By taking advantage of the extra 5 input channels of the inpaint model, we guide the video generation with a hint image. In this demo the hint image can be given by the user, otherwise it is generated by an generative image model. The temporal layers are a port of [Make-A-Video PyTorch](https://github.com/lucidrains/make-a-video-pytorch) to FLAX. The convolution is pseudo 3D and seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D. Temporal attention is purely self attention and also separately attends to time. Only the new temporal layers have been fine tuned on a dataset of videos themed around dance. The model has been trained for 80 epochs on a dataset of 18,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample. See model and dataset links in the metadata. Model implementation and training code can be found at """) with gr.Column(): intro3 = gr.Markdown(""" **Please be patient. The model might have to compile with current parameters.** This can take up to 5 minutes on the first run, and 2-3 minutes on later runs. The compilation will be cached and consecutive runs with the same parameters will be much faster. Changes to the following parameters require the model to compile - Number of frames - Width & Height - Inference steps - Input image vs. no input image - Noise scheduler type If you encounter any issues, please report them here: [Space discussions](https://huggingface.co/spaces/TempoFunk/makeavid-sd-jax/discussions) """) with gr.Row(variant = variant): with gr.Column(): with gr.Row(): #cancel_button = gr.Button(value = 'Cancel') submit_button = gr.Button(value = 'Make A Video', variant = 'primary') prompt_input = gr.Textbox( label = 'Prompt', value = 'They are dancing in the club but everybody is a 3d cg hairy monster wearing a hairy costume.', interactive = True ) neg_prompt_input = gr.Textbox( label = 'Negative prompt (optional)', value = 'monochrome, saturated', interactive = True ) cfg_input = gr.Slider( label = 'Guidance scale video', minimum = 1.0, maximum = 20.0, step = 0.1, value = 15.0, interactive = True ) cfg_image_input = gr.Slider( label = 'Guidance scale hint (no effect with input image)', minimum = 1.0, maximum = 20.0, step = 0.1, value = 9.0, interactive = True ) seed_input = gr.Number( label = 'Random seed', value = 0, interactive = True, precision = 0 ) image_input = gr.Image( label = 'Hint image (optional)', interactive = True, image_mode = 'RGB', type = 'pil', optional = True, source = 'upload', value = 'example_input.png' ) inference_steps_input = gr.Slider( label = 'Steps', minimum = 2, maximum = 100, value = 20, step = 1, interactive = True ) num_frames_input = gr.Slider( label = 'Number of frames to generate', minimum = 1, maximum = 24, step = 1, value = 24, interactive = True ) width_input = gr.Slider( label = 'Width', minimum = 64, maximum = 576, step = 64, value = 512, interactive = True ) height_input = gr.Slider( label = 'Height', minimum = 64, maximum = 576, step = 64, value = 512, interactive = True ) scheduler_input = gr.Dropdown( label = 'Noise scheduler', choices = list(SCHEDULERS.keys()), value = 'DPM', interactive = True ) with gr.Row(): fps_input = gr.Slider( label = 'Output FPS', minimum = 1, maximum = 1000, step = 1, value = 12, interactive = True ) output_format = gr.Dropdown( label = 'Output format', choices = _output_formats, value = 'gif', interactive = True ) with gr.Column(): #will_trigger = gr.Markdown('') patience = gr.Markdown('**Please be patient. The model might have to compile with current parameters.**') image_output = gr.Image( label = 'Output', value = 'example.webp', interactive = False ) #trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input, scheduler_input ] #trigger_check_fun = partial(check_if_compiled, message = 'Current parameters need compilation.') #height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) #width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) #num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) #image_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) #inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) #scheduler_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger) submit_button.click( fn = generate, inputs = [ prompt_input, neg_prompt_input, image_input, inference_steps_input, cfg_input, cfg_image_input, seed_input, fps_input, num_frames_input, height_input, width_input, scheduler_input, output_format ], outputs = image_output, postprocess = False ) #cancel_button.click(fn = lambda: None, cancels = ev) demo.queue(concurrency_count = 1, max_size = 12) demo.launch() # Photorealistic fantasy oil painting of the angry minotaur in a threatening pose by Randy Vargas. # A girl is dancing by a beautiful lake by sophie anderson and greg rutkowski and alphonse mucha. # They are dancing in the club but everybody is a 3d cg hairy monster wearing a hairy costume.