Spaces:
Running
on
Zero
Running
on
Zero
File size: 77,682 Bytes
b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 6c5dc58 b2682d8 6c5dc58 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 ff48bea b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 15d0e68 b2682d8 ff48bea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 |
##!/usr/bin/python3
# -*- coding: utf-8 -*-
import os, random, sys
import numpy as np
import requests
import torch
import spaces
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, snapshot_download
from scipy.ndimage import binary_dilation, binary_erosion
from transformers import (LlavaNextProcessor, LlavaNextForConditionalGeneration,
Qwen2VLForConditionalGeneration, Qwen2VLProcessor)
from segment_anything import SamPredictor, build_sam, SamAutomaticMaskGenerator
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from app.src.vlm_pipeline import (
vlm_response_editing_type,
vlm_response_object_wait_for_edit,
vlm_response_mask,
vlm_response_prompt_after_apply_instruction
)
from app.src.brushedit_all_in_one_pipeline import BrushEdit_Pipeline
from app.utils.utils import load_grounding_dino_model
from app.src.vlm_template import vlms_template
from app.src.base_model_template import base_models_template
from app.src.aspect_ratio_template import aspect_ratios
from openai import OpenAI
# base_openai_url = ""
#### Description ####
logo = r"""
<center><img src='./assets/logo_brushedit.png' alt='BrushEdit logo' style="width:80px; margin-bottom:10px"></center>
"""
head = r"""
<div style="text-align: center;">
<h1> BrushEdit: All-In-One Image Inpainting and Editing</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://liyaowei-stu.github.io/project/BrushEdit/'><img src='https://img.shields.io/badge/Project_Page-BrushEdit-green' alt='Project Page'></a>
<a href='https://arxiv.org/abs/2412.10316'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a>
<a href='https://github.com/TencentARC/BrushEdit'><img src='https://img.shields.io/badge/Code-Github-orange'></a>
</div>
</br>
</div>
"""
descriptions = r"""
Official Gradio Demo for <a href='https://tencentarc.github.io/BrushNet/'><b>BrushEdit: All-In-One Image Inpainting and Editing</b></a><br>
🧙 BrushEdit enables precise, user-friendly instruction-based image editing via a inpainting model.<br>
"""
instructions = r"""
Currently, we support two modes: <b>fully automated command editing</b> and <b>interactive command editing</b>.
🛠️ <b>Fully automated instruction-based editing</b>:
<ul>
<li> ⭐️ <b>1.Choose Image: </b> Upload <img src="https://github.com/user-attachments/assets/f2dca1e6-31f9-4716-ae84-907f24415bac" alt="upload" style="display:inline; height:1em; vertical-align:middle;"> or select <img src="https://github.com/user-attachments/assets/de808f7d-c74a-44c7-9cbf-f0dbfc2c1abf" alt="example" style="display:inline; height:1em; vertical-align:middle;"> one image from Example. </li>
<li> ⭐️ <b>2.Input ⌨️ Instructions: </b> Input the instructions (supports addition, deletion, and modification), e.g. remove xxx .</li>
<li> ⭐️ <b>3.Run: </b> Click <b>💫 Run</b> button to automatic edit image.</li>
</ul>
🛠️ <b>Interactive instruction-based editing</b>:
<ul>
<li> ⭐️ <b>1.Choose Image: </b> Upload <img src="https://github.com/user-attachments/assets/f2dca1e6-31f9-4716-ae84-907f24415bac" alt="upload" style="display:inline; height:1em; vertical-align:middle;"> or select <img src="https://github.com/user-attachments/assets/de808f7d-c74a-44c7-9cbf-f0dbfc2c1abf" alt="example" style="display:inline; height:1em; vertical-align:middle;"> one image from Example. </li>
<li> ⭐️ <b>2.Finely Brushing: </b> Use a brush <img src="https://github.com/user-attachments/assets/c466c5cc-ac8f-4b4a-9bc5-04c4737fe1ef" alt="brush" style="display:inline; height:1em; vertical-align:middle;"> to outline the area you want to edit. And You can also use the eraser <img src="https://github.com/user-attachments/assets/b6370369-b080-4550-b0d0-830ff22d9068" alt="eraser" style="display:inline; height:1em; vertical-align:middle;"> to restore. </li>
<li> ⭐️ <b>3.Input ⌨️ Instructions: </b> Input the instructions. </li>
<li> ⭐️ <b>4.Run: </b> Click <b>💫 Run</b> button to automatic edit image. </li>
</ul>
<b> We strongly recommend using GPT-4o for reasoning. </b> After selecting the VLM model as gpt4-o, enter the API KEY and click the Submit and Verify button. If the output is success, you can use gpt4-o normally. Secondarily, we recommend using the Qwen2VL model.
<b> We recommend zooming out in your browser for a better viewing range and experience. </b>
<b> For more detailed feature descriptions, see the bottom. </b>
☕️ Have fun! 🎄 Wishing you a merry Christmas!
"""
tips = r"""
💡 <b>Some Tips</b>:
<ul>
<li> 🤠 After input the instructions, you can click the <b>Generate Mask</b> button. The mask generated by VLM will be displayed in the preview panel on the right side. </li>
<li> 🤠 After generating the mask or when you use the brush to draw the mask, you can perform operations such as <b>randomization</b>, <b>dilation</b>, <b>erosion</b>, and <b>movement</b>. </li>
<li> 🤠 After input the instructions, you can click the <b>Generate Target Prompt</b> button. The target prompt will be displayed in the text box, and you can modify it according to your ideas. </li>
</ul>
💡 <b>Detailed Features</b>:
<ul>
<li> 🎨 <b>Aspect Ratio</b>: Select the aspect ratio of the image. To prevent OOM, 1024px is the maximum resolution.</li>
<li> 🎨 <b>VLM Model</b>: Select the VLM model. We use preloaded models to save time. To use other VLM models, download them and uncomment the relevant lines in vlm_template.py from our GitHub repo. </li>
<li> 🎨 <b>Generate Mask</b>: According to the input instructions, generate a mask for the area that may need to be edited. </li>
<li> 🎨 <b>Square/Circle Mask</b>: Based on the existing mask, generate masks for squares and circles. (The coarse-grained mask provides more editing imagination.) </li>
<li> 🎨 <b>Invert Mask</b>: Invert the mask to generate a new mask. </li>
<li> 🎨 <b>Dilation/Erosion Mask</b>: Expand or shrink the mask to include or exclude more areas. </li>
<li> 🎨 <b>Move Mask</b>: Move the mask to a new position. </li>
<li> 🎨 <b>Generate Target Prompt</b>: Generate a target prompt based on the input instructions. </li>
<li> 🎨 <b>Target Prompt</b>: Description for masking area, manual input or modification can be made when the content generated by VLM does not meet expectations. </li>
<li> 🎨 <b>Blending</b>: Blending brushnet's output and the original input, ensuring the original image details in the unedited areas. (turn off is beeter when removing.) </li>
<li> 🎨 <b>Control length</b>: The intensity of editing and inpainting. </li>
</ul>
💡 <b>Advanced Features</b>:
<ul>
<li> 🎨 <b>Base Model</b>: We use preloaded models to save time. To use other VLM models, download them and uncomment the relevant lines in vlm_template.py from our GitHub repo. </li>
<li> 🎨 <b>Blending</b>: Blending brushnet's output and the original input, ensuring the original image details in the unedited areas. (turn off is beeter when removing.) </li>
<li> 🎨 <b>Control length</b>: The intensity of editing and inpainting. </li>
<li> 🎨 <b>Num samples</b>: The number of samples to generate. </li>
<li> 🎨 <b>Negative prompt</b>: The negative prompt for the classifier-free guidance. </li>
<li> 🎨 <b>Guidance scale</b>: The guidance scale for the classifier-free guidance. </li>
</ul>
"""
citation = r"""
If BrushEdit is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/BrushEdit' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/BrushEdit?style=social)](https://github.com/TencentARC/BrushEdit)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@misc{li2024brushedit,
title={BrushEdit: All-In-One Image Inpainting and Editing},
author={Yaowei Li and Yuxuan Bian and Xuan Ju and Zhaoyang Zhang and and Junhao Zhuang and Ying Shan and Yuexian Zou and Qiang Xu},
year={2024},
eprint={2412.10316},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>liyaowei@gmail.com</b>.
"""
# - - - - - examples - - - - - #
EXAMPLES = [
[
Image.open("./assets/frog/frog.jpeg").convert("RGBA"),
"add a magic hat on frog head.",
642087011,
"frog",
"frog",
True,
False,
"GPT4-o (Highly Recommended)"
],
[
Image.open("./assets/chinese_girl/chinese_girl.png").convert("RGBA"),
"replace the background to ancient China.",
648464818,
"chinese_girl",
"chinese_girl",
True,
False,
"GPT4-o (Highly Recommended)"
],
[
Image.open("./assets/angel_christmas/angel_christmas.png").convert("RGBA"),
"remove the deer.",
648464818,
"angel_christmas",
"angel_christmas",
False,
False,
"GPT4-o (Highly Recommended)"
],
[
Image.open("./assets/sunflower_girl/sunflower_girl.png").convert("RGBA"),
"add a wreath on head.",
648464818,
"sunflower_girl",
"sunflower_girl",
True,
False,
"GPT4-o (Highly Recommended)"
],
[
Image.open("./assets/girl_on_sun/girl_on_sun.png").convert("RGBA"),
"add a butterfly fairy.",
648464818,
"girl_on_sun",
"girl_on_sun",
True,
False,
"GPT4-o (Highly Recommended)"
],
[
Image.open("./assets/spider_man_rm/spider_man.png").convert("RGBA"),
"remove the christmas hat.",
642087011,
"spider_man_rm",
"spider_man_rm",
False,
False,
"GPT4-o (Highly Recommended)"
],
[
Image.open("./assets/anime_flower/anime_flower.png").convert("RGBA"),
"remove the flower.",
642087011,
"anime_flower",
"anime_flower",
False,
False,
"GPT4-o (Highly Recommended)"
],
[
Image.open("./assets/chenduling/chengduling.jpg").convert("RGBA"),
"replace the clothes to a delicated floral skirt.",
648464818,
"chenduling",
"chenduling",
True,
False,
"GPT4-o (Highly Recommended)"
],
[
Image.open("./assets/hedgehog_rp_bg/hedgehog.png").convert("RGBA"),
"make the hedgehog in Italy.",
648464818,
"hedgehog_rp_bg",
"hedgehog_rp_bg",
True,
False,
"GPT4-o (Highly Recommended)"
],
]
INPUT_IMAGE_PATH = {
"frog": "./assets/frog/frog.jpeg",
"chinese_girl": "./assets/chinese_girl/chinese_girl.png",
"angel_christmas": "./assets/angel_christmas/angel_christmas.png",
"sunflower_girl": "./assets/sunflower_girl/sunflower_girl.png",
"girl_on_sun": "./assets/girl_on_sun/girl_on_sun.png",
"spider_man_rm": "./assets/spider_man_rm/spider_man.png",
"anime_flower": "./assets/anime_flower/anime_flower.png",
"chenduling": "./assets/chenduling/chengduling.jpg",
"hedgehog_rp_bg": "./assets/hedgehog_rp_bg/hedgehog.png",
}
MASK_IMAGE_PATH = {
"frog": "./assets/frog/mask_f7b350de-6f2c-49e3-b535-995c486d78e7.png",
"chinese_girl": "./assets/chinese_girl/mask_54759648-0989-48e0-bc82-f20e28b5ec29.png",
"angel_christmas": "./assets/angel_christmas/mask_f15d9b45-c978-4e3d-9f5f-251e308560c3.png",
"sunflower_girl": "./assets/sunflower_girl/mask_99cc50b4-7dc4-4de5-8748-ec10772f0317.png",
"girl_on_sun": "./assets/girl_on_sun/mask_264eac8b-8b65-479c-9755-020a60880c37.png",
"spider_man_rm": "./assets/spider_man_rm/mask_a5d410e6-8e8d-432f-8144-defbc3e1eae9.png",
"anime_flower": "./assets/anime_flower/mask_37553172-9b38-4727-bf2e-37d7e2b93461.png",
"chenduling": "./assets/chenduling/mask_68e3ff6f-da07-4b37-91df-13d6eed7b997.png",
"hedgehog_rp_bg": "./assets/hedgehog_rp_bg/mask_db7f8bf8-8349-46d3-b14e-43d67fbe25d3.png",
}
MASKED_IMAGE_PATH = {
"frog": "./assets/frog/masked_image_f7b350de-6f2c-49e3-b535-995c486d78e7.png",
"chinese_girl": "./assets/chinese_girl/masked_image_54759648-0989-48e0-bc82-f20e28b5ec29.png",
"angel_christmas": "./assets/angel_christmas/masked_image_f15d9b45-c978-4e3d-9f5f-251e308560c3.png",
"sunflower_girl": "./assets/sunflower_girl/masked_image_99cc50b4-7dc4-4de5-8748-ec10772f0317.png",
"girl_on_sun": "./assets/girl_on_sun/masked_image_264eac8b-8b65-479c-9755-020a60880c37.png",
"spider_man_rm": "./assets/spider_man_rm/masked_image_a5d410e6-8e8d-432f-8144-defbc3e1eae9.png",
"anime_flower": "./assets/anime_flower/masked_image_37553172-9b38-4727-bf2e-37d7e2b93461.png",
"chenduling": "./assets/chenduling/masked_image_68e3ff6f-da07-4b37-91df-13d6eed7b997.png",
"hedgehog_rp_bg": "./assets/hedgehog_rp_bg/masked_image_db7f8bf8-8349-46d3-b14e-43d67fbe25d3.png",
}
OUTPUT_IMAGE_PATH = {
"frog": "./assets/frog/image_edit_f7b350de-6f2c-49e3-b535-995c486d78e7_1.png",
"chinese_girl": "./assets/chinese_girl/image_edit_54759648-0989-48e0-bc82-f20e28b5ec29_1.png",
"angel_christmas": "./assets/angel_christmas/image_edit_f15d9b45-c978-4e3d-9f5f-251e308560c3_0.png",
"sunflower_girl": "./assets/sunflower_girl/image_edit_99cc50b4-7dc4-4de5-8748-ec10772f0317_3.png",
"girl_on_sun": "./assets/girl_on_sun/image_edit_264eac8b-8b65-479c-9755-020a60880c37_0.png",
"spider_man_rm": "./assets/spider_man_rm/image_edit_a5d410e6-8e8d-432f-8144-defbc3e1eae9_0.png",
"anime_flower": "./assets/anime_flower/image_edit_37553172-9b38-4727-bf2e-37d7e2b93461_2.png",
"chenduling": "./assets/chenduling/image_edit_68e3ff6f-da07-4b37-91df-13d6eed7b997_0.png",
"hedgehog_rp_bg": "./assets/hedgehog_rp_bg/image_edit_db7f8bf8-8349-46d3-b14e-43d67fbe25d3_3.png",
}
# os.environ['GRADIO_TEMP_DIR'] = 'gradio_temp_dir'
# os.makedirs('gradio_temp_dir', exist_ok=True)
VLM_MODEL_NAMES = list(vlms_template.keys())
DEFAULT_VLM_MODEL_NAME = "Qwen2-VL-7B-Instruct (Default)"
BASE_MODELS = list(base_models_template.keys())
DEFAULT_BASE_MODEL = "realisticVision (Default)"
ASPECT_RATIO_LABELS = list(aspect_ratios)
DEFAULT_ASPECT_RATIO = ASPECT_RATIO_LABELS[0]
## init device
try:
if torch.cuda.is_available():
device = "cuda"
elif sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
except:
device = "cpu"
# ## init torch dtype
# if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
# torch_dtype = torch.bfloat16
# else:
# torch_dtype = torch.float16
# if device == "mps":
# torch_dtype = torch.float16
torch_dtype = torch.float16
# download hf models
BrushEdit_path = "models/"
if not os.path.exists(BrushEdit_path):
BrushEdit_path = snapshot_download(
repo_id="TencentARC/BrushEdit",
local_dir=BrushEdit_path,
token=os.getenv("HF_TOKEN"),
)
## init default VLM
vlm_type, vlm_local_path, vlm_processor, vlm_model = vlms_template[DEFAULT_VLM_MODEL_NAME]
if vlm_processor != "" and vlm_model != "":
vlm_model.to(device)
else:
raise gr.Error("Please Download default VLM model "+ DEFAULT_VLM_MODEL_NAME +" first.")
## init base model
base_model_path = os.path.join(BrushEdit_path, "base_model/realisticVisionV60B1_v51VAE")
brushnet_path = os.path.join(BrushEdit_path, "brushnetX")
sam_path = os.path.join(BrushEdit_path, "sam/sam_vit_h_4b8939.pth")
groundingdino_path = os.path.join(BrushEdit_path, "grounding_dino/groundingdino_swint_ogc.pth")
# input brushnetX ckpt path
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch_dtype)
pipe = StableDiffusionBrushNetPipeline.from_pretrained(
base_model_path, brushnet=brushnet, torch_dtype=torch_dtype, low_cpu_mem_usage=False
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed or when using Torch 2.0.
# pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
## init SAM
sam = build_sam(checkpoint=sam_path)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
sam_automask_generator = SamAutomaticMaskGenerator(sam)
## init groundingdino_model
config_file = 'app/utils/GroundingDINO_SwinT_OGC.py'
groundingdino_model = load_grounding_dino_model(config_file, groundingdino_path, device=device)
## Ordinary function
def crop_and_resize(image: Image.Image,
target_width: int,
target_height: int) -> Image.Image:
"""
Crops and resizes an image while preserving the aspect ratio.
Args:
image (Image.Image): Input PIL image to be cropped and resized.
target_width (int): Target width of the output image.
target_height (int): Target height of the output image.
Returns:
Image.Image: Cropped and resized image.
"""
# Original dimensions
original_width, original_height = image.size
original_aspect = original_width / original_height
target_aspect = target_width / target_height
# Calculate crop box to maintain aspect ratio
if original_aspect > target_aspect:
# Crop horizontally
new_width = int(original_height * target_aspect)
new_height = original_height
left = (original_width - new_width) / 2
top = 0
right = left + new_width
bottom = original_height
else:
# Crop vertically
new_width = original_width
new_height = int(original_width / target_aspect)
left = 0
top = (original_height - new_height) / 2
right = original_width
bottom = top + new_height
# Crop and resize
cropped_image = image.crop((left, top, right, bottom))
resized_image = cropped_image.resize((target_width, target_height), Image.NEAREST)
return resized_image
## Ordinary function
def resize(image: Image.Image,
target_width: int,
target_height: int) -> Image.Image:
"""
Crops and resizes an image while preserving the aspect ratio.
Args:
image (Image.Image): Input PIL image to be cropped and resized.
target_width (int): Target width of the output image.
target_height (int): Target height of the output image.
Returns:
Image.Image: Cropped and resized image.
"""
# Original dimensions
resized_image = image.resize((target_width, target_height), Image.NEAREST)
return resized_image
def move_mask_func(mask, direction, units):
binary_mask = mask.squeeze()>0
rows, cols = binary_mask.shape
moved_mask = np.zeros_like(binary_mask, dtype=bool)
if direction == 'down':
# move down
moved_mask[max(0, units):, :] = binary_mask[:rows - units, :]
elif direction == 'up':
# move up
moved_mask[:rows - units, :] = binary_mask[units:, :]
elif direction == 'right':
# move left
moved_mask[:, max(0, units):] = binary_mask[:, :cols - units]
elif direction == 'left':
# move right
moved_mask[:, :cols - units] = binary_mask[:, units:]
return moved_mask
def random_mask_func(mask, dilation_type='square', dilation_size=20):
# Randomly select the size of dilation
binary_mask = mask.squeeze()>0
if dilation_type == 'square_dilation':
structure = np.ones((dilation_size, dilation_size), dtype=bool)
dilated_mask = binary_dilation(binary_mask, structure=structure)
elif dilation_type == 'square_erosion':
structure = np.ones((dilation_size, dilation_size), dtype=bool)
dilated_mask = binary_erosion(binary_mask, structure=structure)
elif dilation_type == 'bounding_box':
# find the most left top and left bottom point
rows, cols = np.where(binary_mask)
if len(rows) == 0 or len(cols) == 0:
return mask # return original mask if no valid points
min_row = np.min(rows)
max_row = np.max(rows)
min_col = np.min(cols)
max_col = np.max(cols)
# create a bounding box
dilated_mask = np.zeros_like(binary_mask, dtype=bool)
dilated_mask[min_row:max_row + 1, min_col:max_col + 1] = True
elif dilation_type == 'bounding_ellipse':
# find the most left top and left bottom point
rows, cols = np.where(binary_mask)
if len(rows) == 0 or len(cols) == 0:
return mask # return original mask if no valid points
min_row = np.min(rows)
max_row = np.max(rows)
min_col = np.min(cols)
max_col = np.max(cols)
# calculate the center and axis length of the ellipse
center = ((min_col + max_col) // 2, (min_row + max_row) // 2)
a = (max_col - min_col) // 2 # half long axis
b = (max_row - min_row) // 2 # half short axis
# create a bounding ellipse
y, x = np.ogrid[:mask.shape[0], :mask.shape[1]]
ellipse_mask = ((x - center[0])**2 / a**2 + (y - center[1])**2 / b**2) <= 1
dilated_mask = np.zeros_like(binary_mask, dtype=bool)
dilated_mask[ellipse_mask] = True
else:
ValueError("dilation_type must be 'square' or 'ellipse'")
# use binary dilation
dilated_mask = np.uint8(dilated_mask[:,:,np.newaxis]) * 255
return dilated_mask
## Gradio component function
def update_vlm_model(vlm_name):
global vlm_model, vlm_processor
if vlm_model is not None:
del vlm_model
torch.cuda.empty_cache()
vlm_type, vlm_local_path, vlm_processor, vlm_model = vlms_template[vlm_name]
## we recommend using preload models, otherwise it will take a long time to download the model. you can edit the code via vlm_template.py
if vlm_type == "llava-next":
if vlm_processor != "" and vlm_model != "":
vlm_model.to(device)
return vlm_model_dropdown
else:
if os.path.exists(vlm_local_path):
vlm_processor = LlavaNextProcessor.from_pretrained(vlm_local_path)
vlm_model = LlavaNextForConditionalGeneration.from_pretrained(vlm_local_path, torch_dtype="auto", device_map="auto")
else:
if vlm_name == "llava-v1.6-mistral-7b-hf (Preload)":
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype="auto", device_map="auto")
elif vlm_name == "llama3-llava-next-8b-hf (Preload)":
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llama3-llava-next-8b-hf")
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llama3-llava-next-8b-hf", torch_dtype="auto", device_map="auto")
elif vlm_name == "llava-v1.6-vicuna-13b-hf (Preload)":
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-13b-hf")
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-vicuna-13b-hf", torch_dtype="auto", device_map="auto")
elif vlm_name == "llava-v1.6-34b-hf (Preload)":
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-34b-hf")
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-34b-hf", torch_dtype="auto", device_map="auto")
elif vlm_name == "llava-next-72b-hf (Preload)":
vlm_processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-next-72b-hf")
vlm_model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-next-72b-hf", torch_dtype="auto", device_map="auto")
elif vlm_type == "qwen2-vl":
if vlm_processor != "" and vlm_model != "":
vlm_model.to(device)
return vlm_model_dropdown
else:
if os.path.exists(vlm_local_path):
vlm_processor = Qwen2VLProcessor.from_pretrained(vlm_local_path)
vlm_model = Qwen2VLForConditionalGeneration.from_pretrained(vlm_local_path, torch_dtype="auto", device_map="auto")
else:
if vlm_name == "qwen2-vl-2b-instruct (Preload)":
vlm_processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
vlm_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto")
elif vlm_name == "qwen2-vl-7b-instruct (Preload)":
vlm_processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
vlm_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto")
elif vlm_name == "qwen2-vl-72b-instruct (Preload)":
vlm_processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct")
vlm_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-72B-Instruct", torch_dtype="auto", device_map="auto")
elif vlm_type == "openai":
pass
return "success"
def update_base_model(base_model_name):
global pipe
## we recommend using preload models, otherwise it will take a long time to download the model. you can edit the code via base_model_template.py
if pipe is not None:
del pipe
torch.cuda.empty_cache()
base_model_path, pipe = base_models_template[base_model_name]
if pipe != "":
pipe.to(device)
else:
if os.path.exists(base_model_path):
pipe = StableDiffusionBrushNetPipeline.from_pretrained(
base_model_path, brushnet=brushnet, torch_dtype=torch_dtype, low_cpu_mem_usage=False
)
# pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
else:
raise gr.Error(f"The base model {base_model_name} does not exist")
return "success"
def submit_GPT4o_KEY(GPT4o_KEY):
global vlm_model, vlm_processor
if vlm_model is not None:
del vlm_model
torch.cuda.empty_cache()
try:
vlm_model = OpenAI(api_key=GPT4o_KEY)
vlm_processor = ""
response = vlm_model.chat.completions.create(
model="gpt-4o-2024-08-06",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Say this is a test"}
]
)
response_str = response.choices[0].message.content
return "Success, " + response_str, "GPT4-o (Highly Recommended)"
except Exception as e:
return "Invalid GPT4o API Key", "GPT4-o (Highly Recommended)"
@spaces.GPU(duration=180)
def process(input_image,
original_image,
original_mask,
prompt,
negative_prompt,
control_strength,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_samples,
blending,
category,
target_prompt,
resize_default,
aspect_ratio_name,
invert_mask_state):
if original_image is None:
if input_image is None:
raise gr.Error('Please upload the input image')
else:
image_pil = input_image["background"].convert("RGB")
original_image = np.array(image_pil)
if prompt is None or prompt == "":
if target_prompt is None or target_prompt == "":
raise gr.Error("Please input your instructions, e.g., remove the xxx")
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if invert_mask_state:
original_mask = original_mask
else:
if input_mask.max() == 0:
original_mask = original_mask
else:
original_mask = input_mask
## inpainting directly if target_prompt is not None
if category is not None:
pass
elif target_prompt is not None and len(target_prompt) >= 1 and original_mask is not None:
pass
else:
try:
category = vlm_response_editing_type(vlm_processor, vlm_model, original_image, prompt, device)
except Exception as e:
raise gr.Error("Please select the correct VLM model and input the correct API Key first!")
if original_mask is not None:
original_mask = np.clip(original_mask, 0, 255).astype(np.uint8)
else:
try:
object_wait_for_edit = vlm_response_object_wait_for_edit(
vlm_processor,
vlm_model,
original_image,
category,
prompt,
device)
original_mask = vlm_response_mask(vlm_processor,
vlm_model,
category,
original_image,
prompt,
object_wait_for_edit,
sam,
sam_predictor,
sam_automask_generator,
groundingdino_model,
device)
except Exception as e:
raise gr.Error("Please select the correct VLM model and input the correct API Key first!")
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
if target_prompt is not None and len(target_prompt) >= 1:
prompt_after_apply_instruction = target_prompt
else:
try:
prompt_after_apply_instruction = vlm_response_prompt_after_apply_instruction(
vlm_processor,
vlm_model,
original_image,
prompt,
device)
except Exception as e:
raise gr.Error("Please select the correct VLM model and input the correct API Key first!")
generator = torch.Generator(device).manual_seed(random.randint(0, 2147483647) if randomize_seed else seed)
with torch.autocast(device):
image, mask_image, mask_np, init_image_np = BrushEdit_Pipeline(pipe,
prompt_after_apply_instruction,
original_mask,
original_image,
generator,
num_inference_steps,
guidance_scale,
control_strength,
negative_prompt,
num_samples,
blending)
original_image = np.array(init_image_np)
masked_image = original_image * (1 - (mask_np>0))
masked_image = masked_image.astype(np.uint8)
masked_image = Image.fromarray(masked_image)
# Save the images (optional)
# import uuid
# uuid = str(uuid.uuid4())
# image[0].save(f"outputs/image_edit_{uuid}_0.png")
# image[1].save(f"outputs/image_edit_{uuid}_1.png")
# image[2].save(f"outputs/image_edit_{uuid}_2.png")
# image[3].save(f"outputs/image_edit_{uuid}_3.png")
# mask_image.save(f"outputs/mask_{uuid}.png")
# masked_image.save(f"outputs/masked_image_{uuid}.png")
# gr.Info(f"Target Prompt: {prompt_after_apply_instruction}", duration=16)
return image, [mask_image], [masked_image], prompt, '', False
def generate_target_prompt(input_image,
original_image,
prompt):
# load example image
if isinstance(original_image, str):
original_image = input_image
prompt_after_apply_instruction = vlm_response_prompt_after_apply_instruction(
vlm_processor,
vlm_model,
original_image,
prompt,
device)
return prompt_after_apply_instruction
def process_mask(input_image,
original_image,
prompt,
resize_default,
aspect_ratio_name):
if original_image is None:
raise gr.Error('Please upload the input image')
if prompt is None:
raise gr.Error("Please input your instructions, e.g., remove the xxx")
## load mask
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.array(alpha_mask)
# load example image
if isinstance(original_image, str):
original_image = input_image["background"]
if input_mask.max() == 0:
category = vlm_response_editing_type(vlm_processor, vlm_model, original_image, prompt, device)
object_wait_for_edit = vlm_response_object_wait_for_edit(vlm_processor,
vlm_model,
original_image,
category,
prompt,
device)
# original mask: h,w,1 [0, 255]
original_mask = vlm_response_mask(
vlm_processor,
vlm_model,
category,
original_image,
prompt,
object_wait_for_edit,
sam,
sam_predictor,
sam_automask_generator,
groundingdino_model,
device)
else:
original_mask = input_mask
category = None
## resize mask if needed
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
mask_image = Image.fromarray(original_mask.squeeze().astype(np.uint8)).convert("RGB")
masked_image = original_image * (1 - (original_mask>0))
masked_image = masked_image.astype(np.uint8)
masked_image = Image.fromarray(masked_image)
return [masked_image], [mask_image], original_mask.astype(np.uint8), category
def process_random_mask(input_image,
original_image,
original_mask,
resize_default,
aspect_ratio_name,
):
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if input_mask.max() == 0:
original_mask = original_mask
else:
original_mask = input_mask
if original_mask is None:
raise gr.Error('Please generate mask first')
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
dilation_type = np.random.choice(['bounding_box', 'bounding_ellipse'])
random_mask = random_mask_func(original_mask, dilation_type).squeeze()
mask_image = Image.fromarray(random_mask.astype(np.uint8)).convert("RGB")
masked_image = original_image * (1 - (random_mask[:,:,None]>0))
masked_image = masked_image.astype(original_image.dtype)
masked_image = Image.fromarray(masked_image)
return [masked_image], [mask_image], random_mask[:,:,None].astype(np.uint8)
def process_dilation_mask(input_image,
original_image,
original_mask,
resize_default,
aspect_ratio_name,
dilation_size=20):
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if input_mask.max() == 0:
original_mask = original_mask
else:
original_mask = input_mask
if original_mask is None:
raise gr.Error('Please generate mask first')
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
dilation_type = np.random.choice(['square_dilation'])
random_mask = random_mask_func(original_mask, dilation_type, dilation_size).squeeze()
mask_image = Image.fromarray(random_mask.astype(np.uint8)).convert("RGB")
masked_image = original_image * (1 - (random_mask[:,:,None]>0))
masked_image = masked_image.astype(original_image.dtype)
masked_image = Image.fromarray(masked_image)
return [masked_image], [mask_image], random_mask[:,:,None].astype(np.uint8)
def process_erosion_mask(input_image,
original_image,
original_mask,
resize_default,
aspect_ratio_name,
dilation_size=20):
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if input_mask.max() == 0:
original_mask = original_mask
else:
original_mask = input_mask
if original_mask is None:
raise gr.Error('Please generate mask first')
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
dilation_type = np.random.choice(['square_erosion'])
random_mask = random_mask_func(original_mask, dilation_type, dilation_size).squeeze()
mask_image = Image.fromarray(random_mask.astype(np.uint8)).convert("RGB")
masked_image = original_image * (1 - (random_mask[:,:,None]>0))
masked_image = masked_image.astype(original_image.dtype)
masked_image = Image.fromarray(masked_image)
return [masked_image], [mask_image], random_mask[:,:,None].astype(np.uint8)
def move_mask_left(input_image,
original_image,
original_mask,
moving_pixels,
resize_default,
aspect_ratio_name):
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if input_mask.max() == 0:
original_mask = original_mask
else:
original_mask = input_mask
if original_mask is None:
raise gr.Error('Please generate mask first')
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
moved_mask = move_mask_func(original_mask, 'left', int(moving_pixels)).squeeze()
mask_image = Image.fromarray(((moved_mask>0).astype(np.uint8)*255)).convert("RGB")
masked_image = original_image * (1 - (moved_mask[:,:,None]>0))
masked_image = masked_image.astype(original_image.dtype)
masked_image = Image.fromarray(masked_image)
if moved_mask.max() <= 1:
moved_mask = ((moved_mask * 255)[:,:,None]).astype(np.uint8)
original_mask = moved_mask
return [masked_image], [mask_image], original_mask.astype(np.uint8)
def move_mask_right(input_image,
original_image,
original_mask,
moving_pixels,
resize_default,
aspect_ratio_name):
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if input_mask.max() == 0:
original_mask = original_mask
else:
original_mask = input_mask
if original_mask is None:
raise gr.Error('Please generate mask first')
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
moved_mask = move_mask_func(original_mask, 'right', int(moving_pixels)).squeeze()
mask_image = Image.fromarray(((moved_mask>0).astype(np.uint8)*255)).convert("RGB")
masked_image = original_image * (1 - (moved_mask[:,:,None]>0))
masked_image = masked_image.astype(original_image.dtype)
masked_image = Image.fromarray(masked_image)
if moved_mask.max() <= 1:
moved_mask = ((moved_mask * 255)[:,:,None]).astype(np.uint8)
original_mask = moved_mask
return [masked_image], [mask_image], original_mask.astype(np.uint8)
def move_mask_up(input_image,
original_image,
original_mask,
moving_pixels,
resize_default,
aspect_ratio_name):
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if input_mask.max() == 0:
original_mask = original_mask
else:
original_mask = input_mask
if original_mask is None:
raise gr.Error('Please generate mask first')
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
moved_mask = move_mask_func(original_mask, 'up', int(moving_pixels)).squeeze()
mask_image = Image.fromarray(((moved_mask>0).astype(np.uint8)*255)).convert("RGB")
masked_image = original_image * (1 - (moved_mask[:,:,None]>0))
masked_image = masked_image.astype(original_image.dtype)
masked_image = Image.fromarray(masked_image)
if moved_mask.max() <= 1:
moved_mask = ((moved_mask * 255)[:,:,None]).astype(np.uint8)
original_mask = moved_mask
return [masked_image], [mask_image], original_mask.astype(np.uint8)
def move_mask_down(input_image,
original_image,
original_mask,
moving_pixels,
resize_default,
aspect_ratio_name):
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
output_w, output_h = aspect_ratios[aspect_ratio_name]
if output_w == "" or output_h == "":
output_h, output_w = original_image.shape[:2]
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
else:
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
pass
else:
if resize_default:
short_side = min(output_w, output_h)
scale_ratio = 640 / short_side
output_w = int(output_w * scale_ratio)
output_h = int(output_h * scale_ratio)
gr.Info(f"Output aspect ratio: {output_w}:{output_h}")
original_image = resize(Image.fromarray(original_image), target_width=int(output_w), target_height=int(output_h))
original_image = np.array(original_image)
if input_mask is not None:
input_mask = resize(Image.fromarray(np.squeeze(input_mask)), target_width=int(output_w), target_height=int(output_h))
input_mask = np.array(input_mask)
if original_mask is not None:
original_mask = resize(Image.fromarray(np.squeeze(original_mask)), target_width=int(output_w), target_height=int(output_h))
original_mask = np.array(original_mask)
if input_mask.max() == 0:
original_mask = original_mask
else:
original_mask = input_mask
if original_mask is None:
raise gr.Error('Please generate mask first')
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
moved_mask = move_mask_func(original_mask, 'down', int(moving_pixels)).squeeze()
mask_image = Image.fromarray(((moved_mask>0).astype(np.uint8)*255)).convert("RGB")
masked_image = original_image * (1 - (moved_mask[:,:,None]>0))
masked_image = masked_image.astype(original_image.dtype)
masked_image = Image.fromarray(masked_image)
if moved_mask.max() <= 1:
moved_mask = ((moved_mask * 255)[:,:,None]).astype(np.uint8)
original_mask = moved_mask
return [masked_image], [mask_image], original_mask.astype(np.uint8)
def invert_mask(input_image,
original_image,
original_mask,
):
alpha_mask = input_image["layers"][0].split()[3]
input_mask = np.asarray(alpha_mask)
if input_mask.max() == 0:
original_mask = 1 - (original_mask>0).astype(np.uint8)
else:
original_mask = 1 - (input_mask>0).astype(np.uint8)
if original_mask is None:
raise gr.Error('Please generate mask first')
original_mask = original_mask.squeeze()
mask_image = Image.fromarray(original_mask*255).convert("RGB")
if original_mask.ndim == 2:
original_mask = original_mask[:,:,None]
if original_mask.max() <= 1:
original_mask = (original_mask * 255).astype(np.uint8)
masked_image = original_image * (1 - (original_mask>0))
masked_image = masked_image.astype(original_image.dtype)
masked_image = Image.fromarray(masked_image)
return [masked_image], [mask_image], original_mask, True
def init_img(base,
init_type,
prompt,
aspect_ratio,
example_change_times
):
image_pil = base["background"].convert("RGB")
original_image = np.array(image_pil)
if max(original_image.shape[0], original_image.shape[1]) * 1.0 / min(original_image.shape[0], original_image.shape[1])>2.0:
raise gr.Error('image aspect ratio cannot be larger than 2.0')
if init_type in MASK_IMAGE_PATH.keys() and example_change_times < 2:
mask_gallery = [Image.open(MASK_IMAGE_PATH[init_type]).convert("L")]
masked_gallery = [Image.open(MASKED_IMAGE_PATH[init_type]).convert("RGB")]
result_gallery = [Image.open(OUTPUT_IMAGE_PATH[init_type]).convert("RGB")]
width, height = image_pil.size
image_processor = VaeImageProcessor(vae_scale_factor=pipe.vae_scale_factor, do_convert_rgb=True)
height_new, width_new = image_processor.get_default_height_width(image_pil, height, width)
image_pil = image_pil.resize((width_new, height_new))
mask_gallery[0] = mask_gallery[0].resize((width_new, height_new))
masked_gallery[0] = masked_gallery[0].resize((width_new, height_new))
result_gallery[0] = result_gallery[0].resize((width_new, height_new))
original_mask = np.array(mask_gallery[0]).astype(np.uint8)[:,:,None] # h,w,1
return base, original_image, original_mask, prompt, mask_gallery, masked_gallery, result_gallery, "", "", "Custom resolution", False, False, example_change_times
else:
if aspect_ratio not in ASPECT_RATIO_LABELS:
aspect_ratio = "Custom resolution"
return base, original_image, None, "", None, None, None, "", "", aspect_ratio, True, False, 0
def reset_func(input_image,
original_image,
original_mask,
prompt,
target_prompt,
):
input_image = None
original_image = None
original_mask = None
prompt = ''
mask_gallery = []
masked_gallery = []
result_gallery = []
target_prompt = ''
if torch.cuda.is_available():
torch.cuda.empty_cache()
return input_image, original_image, original_mask, prompt, mask_gallery, masked_gallery, result_gallery, target_prompt, True, False
def update_example(example_type,
prompt,
example_change_times):
input_image = INPUT_IMAGE_PATH[example_type]
image_pil = Image.open(input_image).convert("RGB")
mask_gallery = [Image.open(MASK_IMAGE_PATH[example_type]).convert("L")]
masked_gallery = [Image.open(MASKED_IMAGE_PATH[example_type]).convert("RGB")]
result_gallery = [Image.open(OUTPUT_IMAGE_PATH[example_type]).convert("RGB")]
width, height = image_pil.size
image_processor = VaeImageProcessor(vae_scale_factor=pipe.vae_scale_factor, do_convert_rgb=True)
height_new, width_new = image_processor.get_default_height_width(image_pil, height, width)
image_pil = image_pil.resize((width_new, height_new))
mask_gallery[0] = mask_gallery[0].resize((width_new, height_new))
masked_gallery[0] = masked_gallery[0].resize((width_new, height_new))
result_gallery[0] = result_gallery[0].resize((width_new, height_new))
original_image = np.array(image_pil)
original_mask = np.array(mask_gallery[0]).astype(np.uint8)[:,:,None] # h,w,1
aspect_ratio = "Custom resolution"
example_change_times += 1
return input_image, prompt, original_image, original_mask, mask_gallery, masked_gallery, result_gallery, aspect_ratio, "", False, example_change_times
block = gr.Blocks(
theme=gr.themes.Soft(
radius_size=gr.themes.sizes.radius_none,
text_size=gr.themes.sizes.text_md
)
)
with block as demo:
with gr.Row():
with gr.Column():
gr.HTML(head)
gr.Markdown(descriptions)
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
with gr.Row(equal_height=True):
gr.Markdown(instructions)
original_image = gr.State(value=None)
original_mask = gr.State(value=None)
category = gr.State(value=None)
status = gr.State(value=None)
invert_mask_state = gr.State(value=False)
example_change_times = gr.State(value=0)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.ImageEditor(
label="Input Image",
type="pil",
brush=gr.Brush(colors=["#FFFFFF"], default_size = 30, color_mode="fixed"),
layers = False,
interactive=True,
height=1024,
sources=["upload"],
)
prompt = gr.Textbox(label="⌨️ Instruction", placeholder="Please input your instruction.", value="",lines=1)
run_button = gr.Button("💫 Run")
vlm_model_dropdown = gr.Dropdown(label="VLM model", choices=VLM_MODEL_NAMES, value=DEFAULT_VLM_MODEL_NAME, interactive=True)
with gr.Group():
with gr.Row():
GPT4o_KEY = gr.Textbox(label="GPT4o API Key", placeholder="Please input your GPT4o API Key when use GPT4o VLM (highly recommended).", value="", lines=1)
GPT4o_KEY_submit = gr.Button("Submit and Verify")
aspect_ratio = gr.Dropdown(label="Output aspect ratio", choices=ASPECT_RATIO_LABELS, value=DEFAULT_ASPECT_RATIO)
resize_default = gr.Checkbox(label="Short edge resize to 640px", value=True)
with gr.Row():
mask_button = gr.Button("Generate Mask")
random_mask_button = gr.Button("Square/Circle Mask ")
with gr.Row():
generate_target_prompt_button = gr.Button("Generate Target Prompt")
target_prompt = gr.Text(
label="Input Target Prompt",
max_lines=5,
placeholder="VLM-generated target prompt, you can first generate if and then modify it (optional)",
value='',
lines=2
)
with gr.Accordion("Advanced Options", open=False, elem_id="accordion1"):
base_model_dropdown = gr.Dropdown(label="Base model", choices=BASE_MODELS, value=DEFAULT_BASE_MODEL, interactive=True)
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Please input your negative prompt",
value='ugly, low quality',lines=1
)
control_strength = gr.Slider(
label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01
)
with gr.Group():
seed = gr.Slider(
label="Seed: ", minimum=0, maximum=2147483647, step=1, value=648464818
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
blending = gr.Checkbox(label="Blending mode", value=True)
num_samples = gr.Slider(
label="Num samples", minimum=0, maximum=4, step=1, value=4
)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=12,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
with gr.Column():
with gr.Row():
with gr.Tab(elem_classes="feedback", label="Masked Image"):
masked_gallery = gr.Gallery(label='Masked Image', show_label=True, elem_id="gallery", preview=True, height=360)
with gr.Tab(elem_classes="feedback", label="Mask"):
mask_gallery = gr.Gallery(label='Mask', show_label=True, elem_id="gallery", preview=True, height=360)
invert_mask_button = gr.Button("Invert Mask")
dilation_size = gr.Slider(
label="Dilation size: ", minimum=0, maximum=50, step=1, value=20
)
with gr.Row():
dilation_mask_button = gr.Button("Dilation Generated Mask")
erosion_mask_button = gr.Button("Erosion Generated Mask")
moving_pixels = gr.Slider(
label="Moving pixels:", show_label=True, minimum=0, maximum=50, value=4, step=1
)
with gr.Row():
move_left_button = gr.Button("Move Left")
move_right_button = gr.Button("Move Right")
with gr.Row():
move_up_button = gr.Button("Move Up")
move_down_button = gr.Button("Move Down")
with gr.Tab(elem_classes="feedback", label="Output"):
result_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", preview=True, height=400)
# target_prompt_output = gr.Text(label="Output Target Prompt", value="", lines=1, interactive=False)
reset_button = gr.Button("Reset")
init_type = gr.Textbox(label="Init Name", value="", visible=False)
example_type = gr.Textbox(label="Example Name", value="", visible=False)
with gr.Row():
example = gr.Examples(
label="Quick Example",
examples=EXAMPLES,
inputs=[input_image, prompt, seed, init_type, example_type, blending, resize_default, vlm_model_dropdown],
examples_per_page=10,
cache_examples=False,
)
with gr.Accordion(label="🎬 Feature Details:", open=True, elem_id="accordion"):
with gr.Row(equal_height=True):
gr.Markdown(tips)
with gr.Row():
gr.Markdown(citation)
## gr.examples can not be used to update the gr.Gallery, so we need to use the following two functions to update the gr.Gallery.
## And we need to solve the conflict between the upload and change example functions.
input_image.upload(
init_img,
[input_image, init_type, prompt, aspect_ratio, example_change_times],
[input_image, original_image, original_mask, prompt, mask_gallery, masked_gallery, result_gallery, target_prompt, init_type, aspect_ratio, resize_default, invert_mask_state, example_change_times]
)
example_type.change(fn=update_example, inputs=[example_type, prompt, example_change_times], outputs=[input_image, prompt, original_image, original_mask, mask_gallery, masked_gallery, result_gallery, aspect_ratio, target_prompt, invert_mask_state, example_change_times])
## vlm and base model dropdown
vlm_model_dropdown.change(fn=update_vlm_model, inputs=[vlm_model_dropdown], outputs=[status])
base_model_dropdown.change(fn=update_base_model, inputs=[base_model_dropdown], outputs=[status])
GPT4o_KEY_submit.click(fn=submit_GPT4o_KEY, inputs=[GPT4o_KEY], outputs=[GPT4o_KEY, vlm_model_dropdown])
invert_mask_button.click(fn=invert_mask, inputs=[input_image, original_image, original_mask], outputs=[masked_gallery, mask_gallery, original_mask, invert_mask_state])
ips=[input_image,
original_image,
original_mask,
prompt,
negative_prompt,
control_strength,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_samples,
blending,
category,
target_prompt,
resize_default,
aspect_ratio,
invert_mask_state]
## run brushedit
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, mask_gallery, masked_gallery, prompt, target_prompt, invert_mask_state])
## mask func
mask_button.click(fn=process_mask, inputs=[input_image, original_image, prompt, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask, category])
random_mask_button.click(fn=process_random_mask, inputs=[input_image, original_image, original_mask, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask])
dilation_mask_button.click(fn=process_dilation_mask, inputs=[input_image, original_image, original_mask, resize_default, aspect_ratio, dilation_size], outputs=[ masked_gallery, mask_gallery, original_mask])
erosion_mask_button.click(fn=process_erosion_mask, inputs=[input_image, original_image, original_mask, resize_default, aspect_ratio, dilation_size], outputs=[ masked_gallery, mask_gallery, original_mask])
## move mask func
move_left_button.click(fn=move_mask_left, inputs=[input_image, original_image, original_mask, moving_pixels, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask])
move_right_button.click(fn=move_mask_right, inputs=[input_image, original_image, original_mask, moving_pixels, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask])
move_up_button.click(fn=move_mask_up, inputs=[input_image, original_image, original_mask, moving_pixels, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask])
move_down_button.click(fn=move_mask_down, inputs=[input_image, original_image, original_mask, moving_pixels, resize_default, aspect_ratio], outputs=[masked_gallery, mask_gallery, original_mask])
## prompt func
generate_target_prompt_button.click(fn=generate_target_prompt, inputs=[input_image, original_image, prompt], outputs=[target_prompt])
## reset func
reset_button.click(fn=reset_func, inputs=[input_image, original_image, original_mask, prompt, target_prompt], outputs=[input_image, original_image, original_mask, prompt, mask_gallery, masked_gallery, result_gallery, target_prompt, resize_default, invert_mask_state])
demo.launch()
|