File size: 7,265 Bytes
6444ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
import torch
import torchvision

from scipy import ndimage

# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration

# SAM
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator

# GroundingDINO
from groundingdino.datasets import transforms as T
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap


def load_grounding_dino_model(model_config_path, model_checkpoint_path, device):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
    load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    print(load_res)
    _ = model.eval()
    return model


def generate_caption(processor, blip_model, raw_image, device):
    # unconditional image captioning
    inputs = processor(raw_image, return_tensors="pt").to(device, torch.float16)
    out = blip_model.generate(**inputs)
    caption = processor.decode(out[0], skip_special_tokens=True)
    return caption



def transform_image(image_pil):

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image


def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."

    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    scores = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)
        scores.append(logit.max().item())

    return boxes_filt, torch.Tensor(scores), pred_phrases



def run_grounded_sam(input_image, 
                     text_prompt, 
                     task_type, 
                     box_threshold, 
                     text_threshold, 
                     iou_threshold, 
                     scribble_mode,
                     sam,
                     groundingdino_model,
                     sam_predictor=None,
                     sam_automask_generator=None,
                     device="cuda"):

    global blip_processor, blip_model, inpaint_pipeline

    # load image
    image = input_image["image"]
    scribble = input_image["mask"]
    size = image.size # w, h

    if sam_predictor is None:
        sam_predictor = SamPredictor(sam)
        sam_automask_generator = SamAutomaticMaskGenerator(sam)

    image_pil = image.convert("RGB")
    image = np.array(image_pil)

    if task_type == 'scribble':
        sam_predictor.set_image(image)
        scribble = scribble.convert("RGB")
        scribble = np.array(scribble)
        scribble = scribble.transpose(2, 1, 0)[0]

        # 将连通域进行标记
        labeled_array, num_features = ndimage.label(scribble >= 255)

        # 计算每个连通域的质心
        centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
        centers = np.array(centers)

        point_coords = torch.from_numpy(centers)
        point_coords = sam_predictor.transform.apply_coords_torch(point_coords, image.shape[:2])
        point_coords = point_coords.unsqueeze(0).to(device)
        point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device)
        if scribble_mode == 'split':
            point_coords = point_coords.permute(1, 0, 2)
            point_labels = point_labels.permute(1, 0)
        masks, _, _ = sam_predictor.predict_torch(
            point_coords=point_coords if len(point_coords) > 0 else None,
            point_labels=point_labels if len(point_coords) > 0 else None,
            mask_input = None,
            boxes = None,
            multimask_output = False,
        )
    elif task_type == 'automask':
        masks = sam_automask_generator.generate(image)
    else:
        transformed_image = transform_image(image_pil)

        if task_type == 'automatic':
            # generate caption and tags
            # use Tag2Text can generate better captions
            # https://huggingface.co/spaces/xinyu1205/Tag2Text
            # but there are some bugs...
            blip_processor = blip_processor or BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
            blip_model = blip_model or BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to(device)
            text_prompt = generate_caption(blip_processor, blip_model, image_pil, device)
            print(f"Caption: {text_prompt}")

        # run grounding dino model
        boxes_filt, scores, pred_phrases = get_grounding_output(
            groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold
        )

        # process boxes
        H, W = size[1], size[0]
        for i in range(boxes_filt.size(0)):
            boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
            boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
            boxes_filt[i][2:] += boxes_filt[i][:2]

        boxes_filt = boxes_filt.cpu()


        if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
            sam_predictor.set_image(image)

            if task_type == 'automatic':
                # use NMS to handle overlapped boxes
                print(f"Before NMS: {boxes_filt.shape[0]} boxes")
                nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
                boxes_filt = boxes_filt[nms_idx]
                pred_phrases = [pred_phrases[idx] for idx in nms_idx]
                print(f"After NMS: {boxes_filt.shape[0]} boxes")
                print(f"Revise caption with number: {text_prompt}")

            transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)

            masks, _, _ = sam_predictor.predict_torch(
                point_coords = None,
                point_labels = None,
                boxes = transformed_boxes,
                multimask_output = False,
            )
            return masks
        else:
            print("task_type:{} error!".format(task_type))