Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,926 Bytes
b2682d8 15d0e68 b2682d8 15d0e68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import base64
import re
import torch
from PIL import Image
from io import BytesIO
import numpy as np
import gradio as gr
from openai import OpenAI
from transformers import (LlavaNextForConditionalGeneration, Qwen2VLForConditionalGeneration)
from qwen_vl_utils import process_vision_info
from app.gpt4_o.instructions import (
create_editing_category_messages_gpt4o,
create_ori_object_messages_gpt4o,
create_add_object_messages_gpt4o,
create_apply_editing_messages_gpt4o)
from app.llava.instructions import (
create_editing_category_messages_llava,
create_ori_object_messages_llava,
create_add_object_messages_llava,
create_apply_editing_messages_llava)
from app.qwen2.instructions import (
create_editing_category_messages_qwen2,
create_ori_object_messages_qwen2,
create_add_object_messages_qwen2,
create_apply_editing_messages_qwen2)
from app.utils.utils import run_grounded_sam
def encode_image(img):
img = Image.fromarray(img.astype('uint8'))
buffered = BytesIO()
img.save(buffered, format="PNG")
img_bytes = buffered.getvalue()
return base64.b64encode(img_bytes).decode('utf-8')
def run_gpt4o_vl_inference(vlm_model,
messages):
response = vlm_model.chat.completions.create(
model="gpt-4o-2024-08-06",
messages=messages
)
response_str = response.choices[0].message.content
return response_str
def run_llava_next_inference(vlm_processor, vlm_model, messages, image, device="cuda"):
prompt = vlm_processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = vlm_processor(images=image, text=prompt, return_tensors="pt").to(device)
output = vlm_model.generate(**inputs, max_new_tokens=200)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, output)
]
response_str = vlm_processor.decode(generated_ids_trimmed[0], skip_special_tokens=True)
return response_str
def run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device="cuda"):
text = vlm_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device)
generated_ids = vlm_model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
response_str = vlm_processor.decode(generated_ids_trimmed[0], skip_special_tokens=True)
return response_str
### response editing type
def vlm_response_editing_type(vlm_processor,
vlm_model,
image,
editing_prompt,
device):
if isinstance(vlm_model, OpenAI):
messages = create_editing_category_messages_gpt4o(editing_prompt)
response_str = run_gpt4o_vl_inference(vlm_model, messages)
elif isinstance(vlm_model, LlavaNextForConditionalGeneration):
messages = create_editing_category_messages_llava(editing_prompt)
response_str = run_llava_next_inference(vlm_processor, vlm_model, messages, image, device=device)
elif isinstance(vlm_model, Qwen2VLForConditionalGeneration):
messages = create_editing_category_messages_qwen2(editing_prompt)
response_str = run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device=device)
try:
for category_name in ["Addition","Remove","Local","Global","Background"]:
if category_name.lower() in response_str.lower():
return category_name
except Exception as e:
raise gr.Error("Please input OpenAI API Key. Or please input correct commands, including add, delete, and modify commands. If it still does not work, please switch to a more powerful VLM.")
### response object to be edited
def vlm_response_object_wait_for_edit(vlm_processor,
vlm_model,
image,
category,
editing_prompt,
device):
if category in ["Background", "Global", "Addition"]:
edit_object = "nan"
return edit_object
if isinstance(vlm_model, OpenAI):
messages = create_ori_object_messages_gpt4o(editing_prompt)
response_str = run_gpt4o_vl_inference(vlm_model, messages)
elif isinstance(vlm_model, LlavaNextForConditionalGeneration):
messages = create_ori_object_messages_llava(editing_prompt)
response_str = run_llava_next_inference(vlm_processor, vlm_model, messages, image , device)
elif isinstance(vlm_model, Qwen2VLForConditionalGeneration):
messages = create_ori_object_messages_qwen2(editing_prompt)
response_str = run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device)
return response_str
### response mask
def vlm_response_mask(vlm_processor,
vlm_model,
category,
image,
editing_prompt,
object_wait_for_edit,
sam=None,
sam_predictor=None,
sam_automask_generator=None,
groundingdino_model=None,
device=None,
):
mask = None
if editing_prompt is None or len(editing_prompt)==0:
raise gr.Error("Please input the editing instruction!")
height, width = image.shape[:2]
if category=="Addition":
try:
if isinstance(vlm_model, OpenAI):
base64_image = encode_image(image)
messages = create_add_object_messages_gpt4o(editing_prompt, base64_image, height=height, width=width)
response_str = run_gpt4o_vl_inference(vlm_model, messages)
elif isinstance(vlm_model, LlavaNextForConditionalGeneration):
messages = create_add_object_messages_llava(editing_prompt, height=height, width=width)
response_str = run_llava_next_inference(vlm_processor, vlm_model, messages, image, device)
elif isinstance(vlm_model, Qwen2VLForConditionalGeneration):
base64_image = encode_image(image)
messages = create_add_object_messages_qwen2(editing_prompt, base64_image, height=height, width=width)
response_str = run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device)
pattern = r'\[\d{1,3}(?:,\s*\d{1,3}){3}\]'
box = re.findall(pattern, response_str)
box = box[0][1:-1].split(",")
for i in range(len(box)):
box[i] = int(box[i])
cus_mask = np.zeros((height, width))
cus_mask[box[1]: box[1]+box[3], box[0]: box[0]+box[2]]=255
mask = cus_mask
except:
raise gr.Error("Please set the mask manually, currently the VLM cannot output the mask!")
elif category=="Background":
labels = "background"
elif category=="Global":
mask = 255 * np.zeros((height, width))
else:
labels = object_wait_for_edit
if mask is None:
for thresh in [0.3,0.25,0.2,0.15,0.1,0.05,0]:
try:
detections = run_grounded_sam(
input_image={"image":Image.fromarray(image.astype('uint8')),
"mask":None},
text_prompt=labels,
task_type="seg",
box_threshold=thresh,
text_threshold=0.25,
iou_threshold=0.5,
scribble_mode="split",
sam=sam,
sam_predictor=sam_predictor,
sam_automask_generator=sam_automask_generator,
groundingdino_model=groundingdino_model,
device=device,
)
mask = np.array(detections[0,0,...].cpu()) * 255
break
except:
print(f"wrong in threshhold: {thresh}, continue")
continue
return mask
def vlm_response_prompt_after_apply_instruction(vlm_processor,
vlm_model,
image,
editing_prompt,
device):
try:
if isinstance(vlm_model, OpenAI):
base64_image = encode_image(image)
messages = create_apply_editing_messages_gpt4o(editing_prompt, base64_image)
response_str = run_gpt4o_vl_inference(vlm_model, messages)
elif isinstance(vlm_model, LlavaNextForConditionalGeneration):
messages = create_apply_editing_messages_llava(editing_prompt)
response_str = run_llava_next_inference(vlm_processor, vlm_model, messages, image, device)
elif isinstance(vlm_model, Qwen2VLForConditionalGeneration):
base64_image = encode_image(image)
messages = create_apply_editing_messages_qwen2(editing_prompt, base64_image)
response_str = run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device)
else:
raise gr.Error("Please select the correct VLM model and input the correct API Key first!")
except Exception as e:
raise gr.Error("Please select the correct VLM model and input the correct API Key first!")
return response_str |