import base64 import re import torch from PIL import Image from io import BytesIO import numpy as np import gradio as gr from openai import OpenAI from transformers import (LlavaNextForConditionalGeneration, Qwen2VLForConditionalGeneration) from qwen_vl_utils import process_vision_info from app.gpt4_o.instructions import ( create_editing_category_messages_gpt4o, create_ori_object_messages_gpt4o, create_add_object_messages_gpt4o, create_apply_editing_messages_gpt4o) from app.llava.instructions import ( create_editing_category_messages_llava, create_ori_object_messages_llava, create_add_object_messages_llava, create_apply_editing_messages_llava) from app.qwen2.instructions import ( create_editing_category_messages_qwen2, create_ori_object_messages_qwen2, create_add_object_messages_qwen2, create_apply_editing_messages_qwen2) from app.utils.utils import run_grounded_sam def encode_image(img): img = Image.fromarray(img.astype('uint8')) buffered = BytesIO() img.save(buffered, format="PNG") img_bytes = buffered.getvalue() return base64.b64encode(img_bytes).decode('utf-8') def run_gpt4o_vl_inference(vlm_model, messages): response = vlm_model.chat.completions.create( model="gpt-4o-2024-08-06", messages=messages ) response_str = response.choices[0].message.content return response_str def run_llava_next_inference(vlm_processor, vlm_model, messages, image, device="cuda"): prompt = vlm_processor.apply_chat_template(messages, add_generation_prompt=True) inputs = vlm_processor(images=image, text=prompt, return_tensors="pt").to(device) output = vlm_model.generate(**inputs, max_new_tokens=200) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, output) ] response_str = vlm_processor.decode(generated_ids_trimmed[0], skip_special_tokens=True) return response_str def run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device="cuda"): text = vlm_processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = vlm_processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(device) generated_ids = vlm_model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] response_str = vlm_processor.decode(generated_ids_trimmed[0], skip_special_tokens=True) return response_str ### response editing type def vlm_response_editing_type(vlm_processor, vlm_model, image, editing_prompt, device): if isinstance(vlm_model, OpenAI): messages = create_editing_category_messages_gpt4o(editing_prompt) response_str = run_gpt4o_vl_inference(vlm_model, messages) elif isinstance(vlm_model, LlavaNextForConditionalGeneration): messages = create_editing_category_messages_llava(editing_prompt) response_str = run_llava_next_inference(vlm_processor, vlm_model, messages, image, device=device) elif isinstance(vlm_model, Qwen2VLForConditionalGeneration): messages = create_editing_category_messages_qwen2(editing_prompt) response_str = run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device=device) try: for category_name in ["Addition","Remove","Local","Global","Background"]: if category_name.lower() in response_str.lower(): return category_name except Exception as e: raise gr.Error("Please input OpenAI API Key. Or please input correct commands, including add, delete, and modify commands. If it still does not work, please switch to a more powerful VLM.") ### response object to be edited def vlm_response_object_wait_for_edit(vlm_processor, vlm_model, image, category, editing_prompt, device): if category in ["Background", "Global", "Addition"]: edit_object = "nan" return edit_object if isinstance(vlm_model, OpenAI): messages = create_ori_object_messages_gpt4o(editing_prompt) response_str = run_gpt4o_vl_inference(vlm_model, messages) elif isinstance(vlm_model, LlavaNextForConditionalGeneration): messages = create_ori_object_messages_llava(editing_prompt) response_str = run_llava_next_inference(vlm_processor, vlm_model, messages, image , device) elif isinstance(vlm_model, Qwen2VLForConditionalGeneration): messages = create_ori_object_messages_qwen2(editing_prompt) response_str = run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device) return response_str ### response mask def vlm_response_mask(vlm_processor, vlm_model, category, image, editing_prompt, object_wait_for_edit, sam=None, sam_predictor=None, sam_automask_generator=None, groundingdino_model=None, device=None, ): mask = None if editing_prompt is None or len(editing_prompt)==0: raise gr.Error("Please input the editing instruction!") height, width = image.shape[:2] if category=="Addition": try: if isinstance(vlm_model, OpenAI): base64_image = encode_image(image) messages = create_add_object_messages_gpt4o(editing_prompt, base64_image, height=height, width=width) response_str = run_gpt4o_vl_inference(vlm_model, messages) elif isinstance(vlm_model, LlavaNextForConditionalGeneration): messages = create_add_object_messages_llava(editing_prompt, height=height, width=width) response_str = run_llava_next_inference(vlm_processor, vlm_model, messages, image, device) elif isinstance(vlm_model, Qwen2VLForConditionalGeneration): base64_image = encode_image(image) messages = create_add_object_messages_qwen2(editing_prompt, base64_image, height=height, width=width) response_str = run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device) pattern = r'\[\d{1,3}(?:,\s*\d{1,3}){3}\]' box = re.findall(pattern, response_str) box = box[0][1:-1].split(",") for i in range(len(box)): box[i] = int(box[i]) cus_mask = np.zeros((height, width)) cus_mask[box[1]: box[1]+box[3], box[0]: box[0]+box[2]]=255 mask = cus_mask except: raise gr.Error("Please set the mask manually, currently the VLM cannot output the mask!") elif category=="Background": labels = "background" elif category=="Global": mask = 255 * np.zeros((height, width)) else: labels = object_wait_for_edit if mask is None: for thresh in [0.3,0.25,0.2,0.15,0.1,0.05,0]: try: detections = run_grounded_sam( input_image={"image":Image.fromarray(image.astype('uint8')), "mask":None}, text_prompt=labels, task_type="seg", box_threshold=thresh, text_threshold=0.25, iou_threshold=0.5, scribble_mode="split", sam=sam, sam_predictor=sam_predictor, sam_automask_generator=sam_automask_generator, groundingdino_model=groundingdino_model, device=device, ) mask = np.array(detections[0,0,...].cpu()) * 255 break except: print(f"wrong in threshhold: {thresh}, continue") continue return mask def vlm_response_prompt_after_apply_instruction(vlm_processor, vlm_model, image, editing_prompt, device): try: if isinstance(vlm_model, OpenAI): base64_image = encode_image(image) messages = create_apply_editing_messages_gpt4o(editing_prompt, base64_image) response_str = run_gpt4o_vl_inference(vlm_model, messages) elif isinstance(vlm_model, LlavaNextForConditionalGeneration): messages = create_apply_editing_messages_llava(editing_prompt) response_str = run_llava_next_inference(vlm_processor, vlm_model, messages, image, device) elif isinstance(vlm_model, Qwen2VLForConditionalGeneration): base64_image = encode_image(image) messages = create_apply_editing_messages_qwen2(editing_prompt, base64_image) response_str = run_qwen2_vl_inference(vlm_processor, vlm_model, messages, image, device) else: raise gr.Error("Please select the correct VLM model and input the correct API Key first!") except Exception as e: raise gr.Error("Please select the correct VLM model and input the correct API Key first!") return response_str