import math
from dataclasses import dataclass
from typing import Callable, Optional

import torch
import torch.nn.functional as F
from diffusers.models.attention import Attention, FeedForward
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import maybe_allow_in_graph
from einops import rearrange, repeat
from torch import Tensor, nn


def zero_module(module):
    # Zero out the parameters of a module and return it.
    for p in module.parameters():
        p.detach().zero_()
    return module


@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
    sample: torch.FloatTensor


def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
    if motion_module_type == "Vanilla":
        return VanillaTemporalModule(
            in_channels=in_channels,
            **motion_module_kwargs,
        )
    else:
        raise ValueError


class VanillaTemporalModule(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads=8,
        num_transformer_block=2,
        attention_block_types=("Temporal_Self", "Temporal_Self"),
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
        temporal_attention_dim_div=1,
        zero_initialize=True,
    ):
        super().__init__()

        self.temporal_transformer = TemporalTransformer3DModel(
            in_channels=in_channels,
            num_attention_heads=num_attention_heads,
            attention_head_dim=in_channels
            // num_attention_heads
            // temporal_attention_dim_div,
            num_layers=num_transformer_block,
            attention_block_types=attention_block_types,
            cross_frame_attention_mode=cross_frame_attention_mode,
            temporal_position_encoding=temporal_position_encoding,
            temporal_position_encoding_max_len=temporal_position_encoding_max_len,
        )

        if zero_initialize:
            self.temporal_transformer.proj_out = zero_module(
                self.temporal_transformer.proj_out
            )
        self.skip_temporal_layers = False  # Whether to skip temporal layer

    def forward(
        self,
        input_tensor,
        temb,
        encoder_hidden_states,
        attention_mask=None,
        anchor_frame_idx=None,
    ):
        if self.skip_temporal_layers is True:
            return input_tensor

        hidden_states = input_tensor
        hidden_states = self.temporal_transformer(
            hidden_states, encoder_hidden_states, attention_mask
        )

        output = hidden_states
        return output


@maybe_allow_in_graph
class TemporalTransformer3DModel(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads,
        attention_head_dim,
        num_layers,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups=32,
        cross_attention_dim=768,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
    ):
        super().__init__()

        inner_dim = num_attention_heads * attention_head_dim

        self.norm = torch.nn.GroupNorm(
            num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
        )
        self.proj_in = nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                TemporalTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    attention_block_types=attention_block_types,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                )
                for d in range(num_layers)
            ]
        )
        self.proj_out = nn.Linear(inner_dim, in_channels)

    def forward(
        self,
        hidden_states: Tensor,
        encoder_hidden_states: Optional[Tensor] = None,
        attention_mask: Optional[Tensor] = None,
    ):
        assert (
            hidden_states.dim() == 5
        ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
        video_length = hidden_states.shape[2]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")

        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
            batch, height * weight, inner_dim
        )
        hidden_states = self.proj_in(hidden_states)

        # Transformer Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                video_length=video_length,
            )

        # output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = (
            hidden_states.reshape(batch, height, weight, inner_dim)
            .permute(0, 3, 1, 2)
            .contiguous()
        )

        output = hidden_states + residual
        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)

        return output


@maybe_allow_in_graph
class TemporalTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: int = 768,
        activation_fn: str = "geglu",
        attention_bias: bool = False,
        upcast_attention: bool = False,
        cross_frame_attention_mode=None,
        temporal_position_encoding: bool = False,
        temporal_position_encoding_max_len: int = 24,
    ):
        super().__init__()

        attention_blocks = []
        norms = []

        for block_name in attention_block_types:
            attention_blocks.append(
                VersatileAttention(
                    attention_mode=block_name.split("_")[0],
                    cross_attention_dim=(
                        cross_attention_dim if block_name.endswith("_Cross") else None
                    ),
                    query_dim=dim,
                    heads=num_attention_heads,
                    dim_head=attention_head_dim,
                    dropout=dropout,
                    bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                )
            )
            norms.append(nn.LayerNorm(dim))

        self.attention_blocks = nn.ModuleList(attention_blocks)
        self.norms = nn.ModuleList(norms)

        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
        self.ff_norm = nn.LayerNorm(dim)

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        video_length=None,
    ):
        for attention_block, norm in zip(self.attention_blocks, self.norms):
            norm_hidden_states = norm(hidden_states)
            hidden_states = (
                attention_block(
                    norm_hidden_states,
                    encoder_hidden_states=(
                        encoder_hidden_states
                        if attention_block.is_cross_attention
                        else None
                    ),
                    video_length=video_length,
                )
                + hidden_states
            )

        hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states

        output = hidden_states
        return output


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout: float = 0.0, max_len: int = 24):
        super().__init__()
        self.dropout: nn.Module = nn.Dropout(p=dropout)
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
        )
        pe: Tensor = torch.zeros(1, max_len, d_model)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)

    def forward(self, x: Tensor):
        x = x + self.pe[:, : x.size(1)]
        return self.dropout(x)


@maybe_allow_in_graph
class VersatileAttention(Attention):
    def __init__(
        self,
        attention_mode: str = None,
        cross_frame_attention_mode: Optional[str] = None,
        temporal_position_encoding: bool = False,
        temporal_position_encoding_max_len: int = 24,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        if attention_mode.lower() != "temporal":
            raise ValueError(f"Attention mode {attention_mode} is not supported.")

        self.attention_mode = attention_mode
        self.is_cross_attention = kwargs["cross_attention_dim"] is not None

        self.pos_encoder = (
            PositionalEncoding(
                kwargs["query_dim"],
                dropout=0.0,
                max_len=temporal_position_encoding_max_len,
            )
            if (temporal_position_encoding and attention_mode == "Temporal")
            else None
        )

    def extra_repr(self):
        return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"

    def forward(
        self,
        hidden_states: Tensor,
        encoder_hidden_states=None,
        attention_mask=None,
        video_length=None,
    ):
        if self.attention_mode == "Temporal":
            d = hidden_states.shape[1]
            hidden_states = rearrange(
                hidden_states, "(b f) d c -> (b d) f c", f=video_length
            )

            if self.pos_encoder is not None:
                hidden_states = self.pos_encoder(hidden_states)

            encoder_hidden_states = (
                repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
                if encoder_hidden_states is not None
                else encoder_hidden_states
            )
        else:
            raise NotImplementedError

        # attention processor makes this easy so that's nice
        hidden_states = self.processor(
            self, hidden_states, encoder_hidden_states, attention_mask
        )

        if self.attention_mode == "Temporal":
            hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states

    def set_use_memory_efficient_attention_xformers(
        self,
        use_memory_efficient_attention_xformers: bool,
        attention_op: Optional[Callable] = None,
    ):
        return None