import torch.nn as nn from lvdm.basics import avg_pool_nd, conv_nd class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd( dims, self.channels, self.out_channels, 3, stride=stride, padding=padding ) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResnetBlock(nn.Module): def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): super().__init__() ps = ksize // 2 if in_c != out_c or sk == False: self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) else: # print('n_in') self.in_conv = None self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) self.act = nn.ReLU() self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) if sk == False: # self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) # edit by zhouxiawang self.skep = nn.Conv2d(out_c, out_c, ksize, 1, ps) else: self.skep = None self.down = down if self.down == True: self.down_opt = Downsample(in_c, use_conv=use_conv) def forward(self, x): if self.down == True: x = self.down_opt(x) if self.in_conv is not None: # edit x = self.in_conv(x) h = self.block1(x) h = self.act(h) h = self.block2(h) if self.skep is not None: return h + self.skep(x) else: return h + x class Adapter(nn.Module): def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True): super(Adapter, self).__init__() self.unshuffle = nn.PixelUnshuffle(8) self.channels = channels self.nums_rb = nums_rb self.body = [] for i in range(len(channels)): for j in range(nums_rb): if (i != 0) and (j == 0): self.body.append( ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv)) else: self.body.append( ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) self.body = nn.ModuleList(self.body) self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) def forward(self, x): # unshuffle x = self.unshuffle(x) # extract features features = [] x = self.conv_in(x) for i in range(len(self.channels)): for j in range(self.nums_rb): idx = i * self.nums_rb + j x = self.body[idx](x) features.append(x) return features