File size: 2,108 Bytes
eee7134
eab471f
 
 
c9e3328
eab471f
 
 
a26f453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eab471f
3f54553
 
 
 
3e2e22a
a26f453
 
 
 
80a8daf
a26f453
3f54553
08221af
a26f453
7f93a13
624a77f
7f93a13
 
3f54553
 
 
80a32ce
624a77f
80a32ce
3f54553
fb908cd
 
7fd4b1c
 
3f54553
624a77f
fb908cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import streamlit as st
from setfit import SetFitModel

# Load the model
model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups")

# Define the classes
group_dict = {
    0: 'Coastal communities',
    1: 'Small island developing states (SIDS)',
    2: 'Landlocked countries',
    3: 'Low-income households',
    4: 'Informal settlements and slums',
    5: 'Rural communities',
    6: 'Children and youth',
    7: 'Older adults and the elderly',
    8: 'Women and girls',
    9: 'People with pre-existing health conditions',
    10: 'People with disabilities',
    11: 'Small-scale farmers and subsistence agriculture',
    12: 'Fisherfolk and fishing communities',
    13: 'Informal sector workers',
    14: 'Children with disabilities',
    15: 'Remote communities',
    16: 'Young adults',
    17: 'Elderly population',
    18: 'Urban slums',
    19: 'Men and boys',
    20: 'Gender non-conforming individuals',
    21: 'Pregnant women and new mothers',
    22: 'Mountain communities',
    23: 'Riverine and flood-prone areas',
    24: 'Drought-prone regions',
    25: 'Indigenous peoples',
    26: 'Migrants and displaced populations',
    27: 'Outdoor workers',
    28: 'Small-scale farmers',
    29: 'Other'}

#def predict(text):
 #   preds = model([text])[0].item()
  #  return group_dict[preds]


# App 
st.title("Identify references to vulnerable groups.")
st.write("This app allows you to identify whether a text contains any references to vulnerable groups. This can, for example, be used to analyse policy documents.")

#col1, col2 = st.columns(2)

# Create text input box
st.text_area(label='Please enter your text here', height=350, value=input_text)

# Create the output box
#output=""
st.text_area(label="Output Data:", value=output, height=350)

# Make predictions
preds = model(input_text)

#modelresponse = model_function(input)
#st.text_area(label ="",value=preds, height =100)

# Select lab
#def get_label(prediction_tensor):
 #   print(prediction_tensor.index("1"))
    #key = prediction_tensor.index(1)
    #return group_dict[key]
    
st.write(preds)
#st.text(get_label(preds))