File size: 2,077 Bytes
eee7134 eab471f c9e3328 eab471f a26f453 eab471f 3f54553 3e2e22a a26f453 80a8daf a26f453 3f54553 1034f64 a26f453 7f93a13 624a77f 68d7a58 7f93a13 3f54553 5062695 3f54553 80a32ce 624a77f 80a32ce 3f54553 fb908cd 7fd4b1c 3f54553 88b3ccc fb908cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import streamlit as st
from setfit import SetFitModel
# Load the model
model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups")
# Define the classes
group_dict = {
0: 'Coastal communities',
1: 'Small island developing states (SIDS)',
2: 'Landlocked countries',
3: 'Low-income households',
4: 'Informal settlements and slums',
5: 'Rural communities',
6: 'Children and youth',
7: 'Older adults and the elderly',
8: 'Women and girls',
9: 'People with pre-existing health conditions',
10: 'People with disabilities',
11: 'Small-scale farmers and subsistence agriculture',
12: 'Fisherfolk and fishing communities',
13: 'Informal sector workers',
14: 'Children with disabilities',
15: 'Remote communities',
16: 'Young adults',
17: 'Elderly population',
18: 'Urban slums',
19: 'Men and boys',
20: 'Gender non-conforming individuals',
21: 'Pregnant women and new mothers',
22: 'Mountain communities',
23: 'Riverine and flood-prone areas',
24: 'Drought-prone regions',
25: 'Indigenous peoples',
26: 'Migrants and displaced populations',
27: 'Outdoor workers',
28: 'Small-scale farmers',
29: 'Other'}
#def predict(text):
# preds = model([text])[0].item()
# return group_dict[preds]
# App
st.title("Identify references to vulnerable groups.")
st.write("This app allows you to identify whether a text contains any references to vulnerable groups. This can, for example, be used to analyse policy documents.")
#col1, col2 = st.columns(2)
# Create text input box
st.text_area(label='Please enter your text here', height=350)
# Create the output box
#output=""
st.text_area(label="Prediction:", height=350)
# Make predictions
#preds = model(input_text)
#modelresponse = model_function(input)
#st.text_area(label ="",value=preds, height =100)
# Select lab
#def get_label(prediction_tensor):
# print(prediction_tensor.index("1"))
#key = prediction_tensor.index(1)
#return group_dict[key]
#st.write(preds)
#st.text(get_label(preds)) |