File size: 17,832 Bytes
47756f1
 
 
 
 
 
 
 
 
 
83a24ec
47756f1
 
 
 
 
 
 
83a24ec
47756f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f420e0
55c1b89
 
 
 
 
 
 
 
8f420e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43a0b6
8f420e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc6302c
8f420e0
 
 
 
 
 
 
 
 
 
 
 
d43a0b6
8f420e0
 
 
d43a0b6
bc6302c
8f420e0
bc6302c
8f420e0
 
 
 
 
 
 
 
e10deaa
8f420e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43a0b6
8f420e0
 
 
d43a0b6
 
8f420e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43a0b6
8f420e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43a0b6
8f420e0
d43a0b6
8f420e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43a0b6
8f420e0
d43a0b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# set path
import glob, os, sys; 
sys.path.append('../utils')

#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from utils.target_classifier import load_targetClassifier, target_classification
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from utils.preprocessing import paraLengthCheck
from io import BytesIO
import xlsxwriter
import plotly.express as px
from utils.target_classifier import label_dict


def app():
    ### Main app code ###
    with st.container():
        
        if 'key1' in st.session_state:

            # Load the existing dataset
            df = st.session_state.key1

            # Load the classifier model
            classifier = load_targetClassifier(classifier_name=params['model_name'])
            st.session_state['{}_classifier'.format(classifier_identifier)] = classifier

     
            df = target_classification(haystack_doc=df,
                                        threshold= params['threshold'])
            st.session_state.key1 = df


def target_display(): 
    
    # Assign dataframe a name
    df = st.session_state['key1']

    st.write(df)

# # Declare all the necessary variables
# classifier_identifier = 'target'
# params  = get_classifier_params(classifier_identifier)

# ## Labels dictionary ###
# _lab_dict = {
#             '0':'NO',
#             '1':'YES',
#             }

# # # @st.cache_data
# # def to_excel(df):
# #     # df['Target Validation'] = 'No'
# #     # df['Netzero Validation'] = 'No'
# #     # df['GHG Validation'] = 'No'
# #     # df['Adapt-Mitig Validation'] = 'No'
# #     # df['Sector'] = 'No'
# #     len_df = len(df)
# #     output = BytesIO()
# #     writer = pd.ExcelWriter(output, engine='xlsxwriter')
# #     df.to_excel(writer, index=False, sheet_name='rawdata')
# #     if 'target_hits' in st.session_state:
# #         target_hits = st.session_state['target_hits']
# #         if 'keep' in target_hits.columns:

# #             target_hits = target_hits[target_hits.keep == True]
# #             target_hits = target_hits.reset_index(drop=True)
# #             target_hits.drop(columns = ['keep'], inplace=True)
# #             target_hits.to_excel(writer,index=False,sheet_name = 'Target')
# #         else:

# #             target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
# #             target_hits = target_hits.reset_index(drop=True)
# #             target_hits.to_excel(writer,index=False,sheet_name = 'Target')

# #     else:
# #         target_hits = df[df['Target Label'] == True]
# #         target_hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
# #                                 'Action Score','Policies_Plans Label','Indicator Label',
# #                                 'Policies_Plans Score','Conditional Score'],inplace=True)
# #         target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
# #         target_hits = target_hits.reset_index(drop=True)
# #         target_hits.to_excel(writer,index=False,sheet_name = 'Target')


# #     if 'action_hits' in st.session_state:
# #         action_hits = st.session_state['action_hits']
# #         if 'keep' in action_hits.columns:
# #             action_hits = action_hits[action_hits.keep == True]
# #             action_hits = action_hits.reset_index(drop=True)
# #             action_hits.drop(columns = ['keep'], inplace=True)
# #             action_hits.to_excel(writer,index=False,sheet_name = 'Action')  
# #         else:
# #             action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
# #             action_hits = action_hits.reset_index(drop=True)
# #             action_hits.to_excel(writer,index=False,sheet_name = 'Action') 
# #     else:
# #         action_hits = df[df['Action Label'] == True]
# #         action_hits.drop(columns=['Target Label','Target Score','Netzero Score',
# #                                 'Netzero Label','GHG Label',
# #                                 'GHG Score','Action Label','Policies_Plans Label',
# #                                 'Policies_Plans Score','Conditional Score'],inplace=True)
# #         action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
# #         action_hits = action_hits.reset_index(drop=True)
# #         action_hits.to_excel(writer,index=False,sheet_name = 'Action') 
            
# #     # hits = hits.drop(columns = ['Target Score','Netzero Score','GHG Score'])
# #     workbook = writer.book
# #     # worksheet = writer.sheets['Sheet1']
# #     # worksheet.data_validation('L2:L{}'.format(len_df), 
# #     #                           {'validate': 'list', 
# #     #                            'source': ['No', 'Yes', 'Discard']})
# #     # worksheet.data_validation('M2:L{}'.format(len_df), 
# #     #                           {'validate': 'list', 
# #     #                            'source': ['No', 'Yes', 'Discard']})
# #     # worksheet.data_validation('N2:L{}'.format(len_df), 
# #     #                           {'validate': 'list', 
# #     #                            'source': ['No', 'Yes', 'Discard']})
# #     # worksheet.data_validation('O2:L{}'.format(len_df), 
# #     #                           {'validate': 'list', 
# #     #                            'source': ['No', 'Yes', 'Discard']})
# #     # worksheet.data_validation('P2:L{}'.format(len_df), 
# #     #                           {'validate': 'list', 
# #     #                            'source': ['No', 'Yes', 'Discard']})                                                                                                         
# #     writer.save()
# #     processed_data = output.getvalue()
# #     return processed_data

# def app():
    
#     ### Main app code ###
#     with st.container():
#         if 'key0' in st.session_state:
#             df = st.session_state.key0

#             #load Classifier
#             classifier = load_targetClassifier(classifier_name=params['model_name'])
#             st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
#             if len(df) > 100:
#                 warning_msg = ": This might take sometime, please sit back and relax."
#             else:
#                 warning_msg = ""
                
#             df  = target_classification(haystack_doc=df,
#                                     threshold= params['threshold'])
#             st.session_state.key1 = df


# # def target_display():

# #     if  'key1' in st.session_state:
# #         df = st.session_state.key1   
# #         st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
# #                       .format(os.path.basename(st.session_state['filename']),
# #                              len(df)))         
# #         hits  = df[df['Target Label'] == 'TARGET'].reset_index(drop=True)
# #         range_val = min(5,len(hits))
# #         if range_val !=0:
            
# #             # collecting some statistics
# #             count_target = sum(hits['Target Label'] == 'TARGET')
# #             count_netzero = sum(hits['Netzero Label'] == 'NETZERO TARGET')
# #             count_ghg = sum(hits['GHG Label'] == 'GHG')
# #             count_transport = sum([True if 'Transport' in x else False 
# #                               for x in hits['Sector Label']])

# #             c1, c2 = st.columns([1,1])
# #             with c1:
# #                 st.write('**Target Paragraphs**: `{}`'.format(count_target))
# #                 st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
# #             with c2:
# #                 st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg))
# #                 st.write('**Transport Related Paragraphs**: `{}`'.format(count_transport))
# #             # st.write('-------------------')    
# #             hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
# #                                 'Action Score','Policies_Plans Label','Indicator Label',
# #                                 'Policies_Plans Score','Conditional Score'],inplace=True)
# #             hits = hits.sort_values(by=['Target Score'], ascending=False)
# #             hits = hits.reset_index(drop=True)

# #             # netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
# #             # if not netzerohit.empty:
# #             #     netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
# #             #     # st.write('-------------------')
# #             #     # st.markdown("###### Netzero paragraph ######")
# #             #     st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
# #             #                     netzerohit.iloc[0]['text'].replace("\n", " ")))                        
# #             #     st.write("")
# #             # else:
# #             #     st.info("🤔 No Netzero paragraph found")

#         #     # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
#         #     st.write('-------------------')
#         #     st.markdown("###### Top few Target Classified paragraph/text results ######")
#         #     range_val = min(5,len(hits))
#         #     for i in range(range_val):
#         #         # the page number reflects the page that contains the main paragraph 
#         #         # according to split limit, the overlapping part can be on a separate page
#         #         st.write('**Result {}** (Relevancy Score: {:.2f}): `page {}`, `Sector: {}`,\
#         #                     `GHG: {}`, `Adapt-Mitig :{}`'\
#         #             .format(i+1,hits.iloc[i]['Relevancy'],
#         #                     hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
#         #                     hits.iloc[i]['GHG Label'],hits.iloc[i]['Adapt-Mitig Label']))                        
#         #         st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
#         #     hits = hits.reset_index(drop =True)
#             st.write('----------------')


#             st.caption("Filter table to select rows to keep for Target category")
#             hits = filter_for_tracs(hits)
#             convert_type = {'Netzero Label': 'category',
#                             'Conditional Label':'category',
#                             'GHG Label':'category',
#                             }
#             hits = hits.astype(convert_type)
#             filter_dataframe(hits)
            
#             # filtered_df = filtered_df[filtered_df.keep == True]
#             # st.write('Explore the data')
#             # AgGrid(hits)
            
            
#             with st.sidebar:
#                 st.write('-------------')
#                 df_xlsx = to_excel(df)
#                 st.download_button(label='📥 Download Result',
#                             data=df_xlsx ,
#                             file_name= os.path.splitext(os.path.basename(st.session_state['filename']))[0]+'.xlsx')

# # st.write(
# #     """This app accomodates the blog [here](https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/)
# #     and walks you through one example of how the Streamlit
# #     Data Science Team builds add-on functions to Streamlit.
# #     """
# # )


# # def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
# #     """
# #     Adds a UI on top of a dataframe to let viewers filter columns

# #     Args:
# #         df (pd.DataFrame): Original dataframe

# #     Returns:
# #         pd.DataFrame: Filtered dataframe
# #     """
# #     modify = st.checkbox("Add filters")

# #     if not modify:
# #         st.session_state['target_hits'] = df
# #         return 


#     # # df = df.copy()
#     # # st.write(len(df))

#     # # Try to convert datetimes into a standard format (datetime, no timezone)
#     # # for col in df.columns:
#     # #     if is_object_dtype(df[col]):
#     # #         try:
#     # #             df[col] = pd.to_datetime(df[col])
#     # #         except Exception:
#     # #             pass

#     # #     if is_datetime64_any_dtype(df[col]):
#     # #         df[col] = df[col].dt.tz_localize(None)

#     # modification_container = st.container()

#     # with modification_container:
#     #     cols = list(set(df.columns) -{'page','Extracted Text'})
#     #     cols.sort()
#     #     to_filter_columns = st.multiselect("Filter dataframe on", cols
#     #                             )
#     #     for column in to_filter_columns:
#     #         left, right = st.columns((1, 20))
#     #         left.write("↳")
#     #         # Treat columns with < 10 unique values as categorical
#     #         if is_categorical_dtype(df[column]):
#     #             # st.write(type(df[column][0]), column)
#     #             user_cat_input = right.multiselect(
#     #                 f"Values for {column}",
#     #                 df[column].unique(),
#     #                 default=list(df[column].unique()),
#     #             )
#     #             df = df[df[column].isin(user_cat_input)]
#     #         elif is_numeric_dtype(df[column]):
#     #             _min = float(df[column].min())
#     #             _max = float(df[column].max())
#     #             step = (_max - _min) / 100
#     #             user_num_input = right.slider(
#     #                 f"Values for {column}",
#     #                 _min,
#     #                 _max,
#     #                 (_min, _max),
#     #                 step=step,
#     #             )
#     #             df = df[df[column].between(*user_num_input)]
#     #         elif is_list_like(df[column]) & (type(df[column][0]) == list) :
#     #             list_vals = set(x for lst in df[column].tolist() for x in lst)
#     #             user_multi_input = right.multiselect(
#     #                 f"Values for {column}",
#     #                 list_vals,
#     #                 default=list_vals,
#     #             )   
#     #             df['check'] = df[column].apply(lambda x: any(i in x for i in user_multi_input))
#     #             df = df[df.check == True]
#     #             df.drop(columns = ['check'],inplace=True)
            
#     #             # df[df[column].between(*user_num_input)]
#     #         # elif is_datetime64_any_dtype(df[column]):
#     #         #     user_date_input = right.date_input(
#     #         #         f"Values for {column}",
#     #         #         value=(
#     #         #             df[column].min(),
#     #         #             df[column].max(),
#     #         #         ),
#     #         #     )
#     #         #     if len(user_date_input) == 2:
#     #         #         user_date_input = tuple(map(pd.to_datetime, user_date_input))
#     #         #         start_date, end_date = user_date_input
#     #         #         df = df.loc[df[column].between(start_date, end_date)]
#     #         else:
#     #             user_text_input = right.text_input(
#     #                 f"Substring or regex in {column}",
#     #             )
#     #             if user_text_input:
#     #                 df = df[df[column].str.lower().str.contains(user_text_input)]
            
#     #         df = df.reset_index(drop=True)
        
#     #     st.session_state['target_hits'] = df
#     #     df['IKI_Netzero'] = df.apply(lambda x: 'T_NETZERO' if ((x['Netzero Label'] == 'NETZERO TARGET') & 
#     #                           (x['Conditional Label'] == 'UNCONDITIONAL'))
#     #                           else 'T_NETZERO_C' if ((x['Netzero Label'] == 'NETZERO TARGET') & 
#     #                           (x['Conditional Label'] == 'CONDITIONAL')
#     #                           )
#     #                           else None, axis=1
#     #                           )
#     #     def check_t(s,c):
#     #         temp = []
#     #         if (('Transport' in s) & (c== 'UNCONDITIONAL')):
#     #             temp.append('T_Transport_Unc')
#     #         if (('Transport' in s) & (c == 'CONDITIONAL')):
#     #             temp.append('T_Transport_C')
#     #         if (('Economy-wide' in s) & (c == 'CONDITIONAL')):
#     #             temp.append('T_Economy_C')
#     #         if (('Economy-wide' in s) & (c == 'UNCONDITIONAL')):
#     #             temp.append('T_Economy_Unc')
#     #         if (('Energy' in s) & (c == 'CONDITIONAL')):
#     #             temp.append('T_Energy_C')
#     #         if (('Energy' in s) & (c == 'UNCONDITIONAL')):
#     #             temp.append('T_Economy_Unc')
#     #         return temp
#     #     df['IKI_Target'] = df.apply(lambda x:check_t(x['Sector Label'], x['Conditional Label']),
#     #                                     axis=1 )

#     #     #  target_hits = st.session_state['target_hits']
#     #     df['keep'] = True


#     #     df = df[['text','IKI_Netzero','IKI_Target','Target Score','Netzero Label','GHG Label',
#     #         'Conditional Label','Sector Label','Adapt-Mitig Label','page','keep']]
#     #     st.dataframe(df)
#     #     # df = st.data_editor(
#     #     #           df,
#     #     #           column_config={
#     #     #               "keep": st.column_config.CheckboxColumn(
#     #     #                   help="Select which rows to keep",
#     #     #                   default=False,
#     #     #               )
#     #     #           },
#     #     #           disabled=list(set(df.columns) - {'keep'}),
#     #     #           hide_index=True,
#     #     #             )
#     #     # st.write("updating target hits....")
#     #     # st.write(len(df[df.keep == True]))
#     #     st.session_state['target_hits'] = df
        
#     # return