File size: 4,974 Bytes
3efd370 cd7bf6b 3efd370 cd7bf6b 3efd370 5d407bd 3efd370 5d407bd 3efd370 5d407bd 3efd370 5d407bd 3efd370 5d407bd 3efd370 5d407bd 3efd370 5d407bd 3efd370 5d407bd 3efd370 5d407bd 3efd370 5d407bd 3efd370 cd7bf6b 3efd370 cd7bf6b 3efd370 cd7bf6b 3efd370 cd7bf6b 3efd370 5cb79de 3efd370 5cb79de 3efd370 5cb79de 3efd370 5cb79de 3efd370 5cb79de 3efd370 5cb79de 3efd370 5cb79de 3efd370 5cb79de 3efd370 cd7bf6b 3efd370 cd7bf6b 3efd370 cd7bf6b 3efd370 cd7bf6b 3efd370 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# from typing import List, Tuple
# from typing_extensions import Literal
# import logging
# import pandas as pd
# from pandas import DataFrame, Series
# from utils.config import getconfig
# from utils.preprocessing import processingpipeline
# import streamlit as st
# from transformers import pipeline
# ## Labels dictionary ###
# _lab_dict = {
# '0':'NO',
# '1':'YES',
# }
# def get_target_labels(preds):
# """
# Function that takes the numerical predictions as an input and returns a list of the labels.
# """
# # Get label names
# preds_list = preds.tolist()
# predictions_names=[]
# # loop through each prediction
# for ele in preds_list:
# # see if there is a value 1 and retrieve index
# try:
# index_of_one = ele.index(1)
# except ValueError:
# index_of_one = "NA"
# # Retrieve the name of the label (if no prediction made = NA)
# if index_of_one != "NA":
# name = label_dict[index_of_one]
# else:
# name = "Other"
# # Append name to list
# predictions_names.append(name)
# return predictions_names
# @st.cache_resource
# def load_targetClassifier(config_file:str = None, classifier_name:str = None):
# """
# loads the document classifier using haystack, where the name/path of model
# in HF-hub as string is used to fetch the model object.Either configfile or
# model should be passed.
# 1. https://docs.haystack.deepset.ai/reference/document-classifier-api
# 2. https://docs.haystack.deepset.ai/docs/document_classifier
# Params
# --------
# config_file: config file path from which to read the model name
# classifier_name: if modelname is passed, it takes a priority if not \
# found then will look for configfile, else raise error.
# Return: document classifier model
# """
# if not classifier_name:
# if not config_file:
# logging.warning("Pass either model name or config file")
# return
# else:
# config = getconfig(config_file)
# classifier_name = config.get('target','MODEL')
# logging.info("Loading classifier")
# doc_classifier = pipeline("text-classification",
# model=classifier_name,
# top_k =1)
# return doc_classifier
# @st.cache_data
# def target_classification(haystack_doc:pd.DataFrame,
# threshold:float = 0.5,
# classifier_model:pipeline= None
# )->Tuple[DataFrame,Series]:
# """
# Text-Classification on the list of texts provided. Classifier provides the
# most appropriate label for each text. There labels indicate whether the paragraph
# references a specific action, target or measure in the paragraph.
# ---------
# haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
# contains the list of paragraphs in different format,here the list of
# Haystack Documents is used.
# threshold: threshold value for the model to keep the results from classifier
# classifiermodel: you can pass the classifier model directly,which takes priority
# however if not then looks for model in streamlit session.
# In case of streamlit avoid passing the model directly.
# Returns
# ----------
# df: Dataframe with two columns['SDG:int', 'text']
# x: Series object with the unique SDG covered in the document uploaded and
# the number of times it is covered/discussed/count_of_paragraphs.
# """
# logging.info("Working on target/action identification")
# haystack_doc['Vulnerability Label'] = 'NA'
# if not classifier_model:
# classifier_model = st.session_state['target_classifier']
# # Get predictions
# predictions = classifier_model(list(haystack_doc.text))
# # Get labels for predictions
# pred_labels = getlabels(predictions)
# # Save labels
# haystack_doc['Target Label'] = pred_labels
# # logging.info("Working on action/target extraction")
# # if not classifier_model:
# # classifier_model = st.session_state['target_classifier']
# # results = classifier_model(list(haystack_doc.text))
# # labels_= [(l[0]['label'],
# # l[0]['score']) for l in results]
# # df1 = DataFrame(labels_, columns=["Target Label","Target Score"])
# # df = pd.concat([haystack_doc,df1],axis=1)
# # df = df.sort_values(by="Target Score", ascending=False).reset_index(drop=True)
# # df['Target Score'] = df['Target Score'].round(2)
# # df.index += 1
# # # df['Label_def'] = df['Target Label'].apply(lambda i: _lab_dict[i])
# return haystack_doc
|