File size: 6,343 Bytes
579b090
 
 
 
 
 
 
 
 
1847572
579b090
af925e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579b090
af925e8
513e282
 
 
 
 
 
af925e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970e55
af925e8
 
 
 
785df60
af925e8
579b090
95c0e35
579b090
 
 
 
 
 
 
 
 
 
 
 
 
f1e641d
 
 
579b090
 
 
 
 
 
95c0e35
579b090
95c0e35
f1e641d
579b090
 
 
 
 
 
 
 
 
f1e641d
3c6fce1
1847572
 
 
 
 
579b090
 
 
 
 
95c0e35
579b090
 
 
 
 
 
f1e641d
579b090
 
 
 
 
 
 
 
 
 
 
 
 
 
95c0e35
aaa7178
e000f68
579b090
e000f68
 
579b090
95c0e35
579b090
e000f68
579b090
af925e8
2604e77
af925e8
2df6f09
 
2604e77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e000f68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from typing import List, Tuple
from typing_extensions import Literal
import logging
import pandas as pd
from pandas import DataFrame, Series
from utils.config import getconfig
from utils.preprocessing import processingpipeline
import streamlit as st
from transformers import pipeline
from setfit import SetFitModel

label_dict= {0: 'Agricultural communities',
 1: 'Children',
 2: 'Coastal communities',
 3: 'Ethnic, racial or other minorities',
 4: 'Fishery communities',
 5: 'Informal sector workers',
 6: 'Members of indigenous and local communities',
 7: 'Migrants and displaced persons',
 8: 'Older persons',
 9: 'Other',
 10: 'Persons living in poverty',
 11: 'Persons with disabilities',
 12: 'Persons with pre-existing health conditions',
 13: 'Residents of drought-prone regions',
 14: 'Rural populations',
 15: 'Sexual minorities (LGBTQI+)',
 16: 'Urban populations',
 17: 'Women and other genders'}

def getlabels(preds):

    """
    Function that takes the numerical predictions as an input and returns a list of the labels.
    
    """
    
    # Get label names
    preds_list = preds.tolist()
    
    predictions_names=[]
    
    # loop through each prediction
    for ele in preds_list:
    
      # see if there is a value 1 and retrieve index
      try:
        index_of_one = ele.index(1)
      except ValueError:
        index_of_one = "NA"
    
      # Retrieve the name of the label (if no prediction made = NA)
      if index_of_one != "NA":
        name  = label_dict[index_of_one]
      else:
        name = "Other"
    
      # Append name to list
      predictions_names.append(name)
    
    return predictions_names
        
@st.cache_resource
def load_vulnerabilityClassifier(config_file:str = None, classifier_name:str = None):
    """
    loads the document classifier using haystack, where the name/path of model
    in HF-hub as string is used to fetch the model object.Either configfile or 
    model should be passed.
    1. https://docs.haystack.deepset.ai/reference/document-classifier-api
    2. https://docs.haystack.deepset.ai/docs/document_classifier
    Params
    --------
    config_file: config file path from which to read the model name
    classifier_name: if modelname is passed, it takes a priority if not \
    found then will look for configfile, else raise error.
    Return: document classifier model
    """

    # If no classifier given
    
    if not classifier_name:
        if not config_file:
            logging.warning("Pass either model name or config file")
            return
        else:
            config = getconfig(config_file)
            classifier_name = config.get('vulnerability','MODEL')
    
    logging.info("Loading vulnerability classifier")
    
    # we are using the pipeline as the model is multilabel and DocumentClassifier 
    # from Haystack doesnt support multilabel
    # in pipeline we use 'sigmoid' to explicitly tell pipeline to make it multilabel
    # if not then it will automatically use softmax, which is not a desired thing.
    # doc_classifier = TransformersDocumentClassifier(
    #                     model_name_or_path=classifier_name,
    #                     task="text-classification",
    #                     top_k = None)

    # Download model from HF Hub
    doc_classifier = SetFitModel.from_pretrained("leavoigt/vulnerability_multilabel")
    
    # doc_classifier = pipeline("text-classification", 
    #                         model=classifier_name, 
    #                         return_all_scores=True, 
    #                         function_to_apply= "sigmoid")

    return doc_classifier


@st.cache_data
def vulnerability_classification(haystack_doc:pd.DataFrame,
                        threshold:float = 0.5, 
                        classifier_model:pipeline= None
                        )->Tuple[DataFrame,Series]:
    """
    Text-Classification on the list of texts provided. Classifier provides the 
    most appropriate label for each text. these labels are in terms of if text 
    reference a group in a vulnerable situation.
    ---------
    haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline 
    contains the list of paragraphs in different format,here the list of 
    Haystack Documents is used.
    threshold: threshold value for the model to keep the results from classifier
    classifiermodel: you can pass the classifier model directly,which takes priority
    however if not then looks for model in streamlit session.
    In case of streamlit avoid passing the model directly.
    Returns
    ----------
    df: Dataframe with two columns['SDG:int', 'text']
    x: Series object with the unique SDG covered in the document uploaded and 
    the number of times it is covered/discussed/count_of_paragraphs. 
    """
    logging.info("Working on vulnerability Identification")
    haystack_doc['Vulnerability Label'] = 'NA'
    # haystack_doc['PA_check'] = haystack_doc['Policy-Action Label'].apply(lambda x: True if len(x) != 0 else False)
                            
    # df1 = haystack_doc[haystack_doc['PA_check'] == True]
    # df = haystack_doc[haystack_doc['PA_check'] == False]
    if not classifier_model:
        classifier_model = st.session_state['vulnerability_classifier']
    
        predictions = classifier_model(list(haystack_doc.text))

        

        pred_labels = getlabels(predictions)
      
        haystack_doc['Vulnerability Label'] = pred_labels
    #   placeholder = {}
    #   for j in range(len(temp)):
    #     placeholder[temp[j]['label']] = temp[j]['score']
    #   list_.append(placeholder)
    # labels_ = [{**list_[l]} for l in range(len(predictions))]
    # truth_df = DataFrame.from_dict(labels_)
    # truth_df = truth_df.round(2)
    # truth_df = truth_df.astype(float) >= threshold
    # truth_df = truth_df.astype(str)
    # categories = list(truth_df.columns)
    # truth_df['Vulnerability Label'] = truth_df.apply(lambda x: {i if x[i]=='True' else 
    #                                           None for i in categories}, axis=1)
    # truth_df['Vulnerability Label'] = truth_df.apply(lambda x: list(x['Vulnerability Label'] 
    #                                                         -{None}),axis=1)
    # haystack_doc['Vulnerability Label'] = list(truth_df['Vulnerability Label'])
    return haystack_doc