cpv_test / app.py
leavoigt's picture
Update app.py
88b3ccc
raw
history blame
2.1 kB
import streamlit as st
from setfit import SetFitModel
# Load the model
model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups")
# Define the classes
group_dict = {
0: 'Coastal communities',
1: 'Small island developing states (SIDS)',
2: 'Landlocked countries',
3: 'Low-income households',
4: 'Informal settlements and slums',
5: 'Rural communities',
6: 'Children and youth',
7: 'Older adults and the elderly',
8: 'Women and girls',
9: 'People with pre-existing health conditions',
10: 'People with disabilities',
11: 'Small-scale farmers and subsistence agriculture',
12: 'Fisherfolk and fishing communities',
13: 'Informal sector workers',
14: 'Children with disabilities',
15: 'Remote communities',
16: 'Young adults',
17: 'Elderly population',
18: 'Urban slums',
19: 'Men and boys',
20: 'Gender non-conforming individuals',
21: 'Pregnant women and new mothers',
22: 'Mountain communities',
23: 'Riverine and flood-prone areas',
24: 'Drought-prone regions',
25: 'Indigenous peoples',
26: 'Migrants and displaced populations',
27: 'Outdoor workers',
28: 'Small-scale farmers',
29: 'Other'}
#def predict(text):
# preds = model([text])[0].item()
# return group_dict[preds]
# App
st.title("Identify references to vulnerable groups.")
st.write("This app allows you to identify whether a text contains any references to vulnerable groups. This can, for example, be used to analyse policy documents.")
#col1, col2 = st.columns(2)
# Create text input box
st.text_area(label='Please enter your text here', height=350, value=input_text)
# Create the output box
#output=""
st.text_area(label="Output Data:", height=350)
# Make predictions
preds = model(input_text)
#modelresponse = model_function(input)
#st.text_area(label ="",value=preds, height =100)
# Select lab
#def get_label(prediction_tensor):
# print(prediction_tensor.index("1"))
#key = prediction_tensor.index(1)
#return group_dict[key]
#st.write(preds)
#st.text(get_label(preds))