leavoigt commited on
Commit
1e5a262
·
1 Parent(s): afff22e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -14
app.py CHANGED
@@ -1,5 +1,15 @@
1
- import streamlit as st
 
 
 
 
 
 
 
 
2
  from utils.uploadAndExample import add_upload
 
 
3
 
4
  ####################################### Dashboard ######################################################
5
 
@@ -43,22 +53,22 @@ with st.expander("ℹ️ - About this app", expanded=False):
43
  #image = Image.open('docStore/img/flow.jpg')
44
  #st.image(image)
45
  #with c3:
46
- st.write("""
47
- What happens in the background?
48
 
49
- - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
50
- In this step the document is broken into smaller paragraphs \
51
- (based on word/sentence count).
52
- - Step 2: The paragraphs are fed to **Target Classifier** which detects if
53
- the paragraph contains any *Target* related information or not.
54
- - Step 3: The paragraphs which are detected containing some target \
55
- related information are then fed to multiple classifier to enrich the
56
- Information Extraction.
57
 
58
- The Step 2 and 3 are repated then similarly for Action and Policies & Plans.
59
- """)
60
 
61
- st.write("")
62
 
63
 
64
  apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
 
1
+ import appStore.target as target_extraction
2
+ import appStore.netzero as netzero
3
+ import appStore.sector as sector
4
+ import appStore.adapmit as adapmit
5
+ import appStore.ghg as ghg
6
+ import appStore.policyaction as policyaction
7
+ import appStore.conditional as conditional
8
+ import appStore.indicator as indicator
9
+ import appStore.doc_processing as processing
10
  from utils.uploadAndExample import add_upload
11
+ from PIL import Image
12
+ import streamlit as st
13
 
14
  ####################################### Dashboard ######################################################
15
 
 
53
  #image = Image.open('docStore/img/flow.jpg')
54
  #st.image(image)
55
  #with c3:
56
+ #st.write("""
57
+ # What happens in the background?
58
 
59
+ # - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
60
+ # In this step the document is broken into smaller paragraphs \
61
+ # (based on word/sentence count).
62
+ # - Step 2: The paragraphs are fed to **Target Classifier** which detects if
63
+ # the paragraph contains any *Target* related information or not.
64
+ # - Step 3: The paragraphs which are detected containing some target \
65
+ # related information are then fed to multiple classifier to enrich the
66
+ # Information Extraction.
67
 
68
+ # The Step 2 and 3 are repated then similarly for Action and Policies & Plans.
69
+ # """)
70
 
71
+ #st.write("")
72
 
73
 
74
  apps = [processing.app, target_extraction.app, netzero.app, ghg.app,