leavoigt commited on
Commit
4722147
·
1 Parent(s): d30cd5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -55
app.py CHANGED
@@ -34,7 +34,7 @@ def install_packages():
34
  install_packages()
35
 
36
  import appStore.vulnerability_analysis as vulnerability_analysis
37
- import appStore.target as target_extraction
38
  import appStore.doc_processing as processing
39
  from utils.uploadAndExample import add_upload
40
  from utils.vulnerability_classifier import label_dict
@@ -95,79 +95,82 @@ if st.button("Analyze Document"):
95
  # If there is data stored
96
  if 'key0' in st.session_state:
97
 
98
- ###################################################################
 
 
 
99
 
100
- #with st.sidebar:
101
- # topic = st.radio(
102
- # "Which category you want to explore?",
103
- # (['Vulnerability', 'Concrete targets/actions/measures']))
104
 
105
- #if topic == 'Vulnerability':
106
 
107
- # Assign dataframe a name
108
- df_vul = st.session_state['key0']
109
- st.write(df_vul)
110
 
111
- col1, col2 = st.columns([1,1])
112
 
113
- with col1:
114
 
115
- # Header
116
- st.subheader("Explore references to vulnerable groups:")
117
 
118
- # Text
119
- num_paragraphs = len(df_vul['Vulnerability Label'])
120
- num_references = df_vul['Vulnerability Label'].apply(lambda x: 'Other' not in x).sum()
121
 
122
- st.markdown(f"""<div style="text-align: justify;"> The document contains a
123
- total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
124
- We identified <span style="color: red;">{num_references}</span>
125
- references to vulnerable groups.</div>
126
- <br>
127
- In the pie chart on the right you can see the distribution of the different
128
- groups defined. For a more detailed view in the text, see the paragraphs and
129
- their respective labels in the table below.</div>""", unsafe_allow_html=True)
130
-
131
- with col2:
132
 
133
- ### Bar chart
134
 
135
- # # Create a df that stores all the labels
136
- df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
137
 
138
- # Count how often each label appears in the "Vulnerability Labels" column
139
- group_counts = {}
140
 
141
- # Iterate through each sublist
142
- for index, row in df_vul.iterrows():
143
 
144
- # Iterate through each group in the sublist
145
- for sublist in row['Vulnerability Label']:
146
 
147
- # Update the count in the dictionary
148
- group_counts[sublist] = group_counts.get(sublist, 0) + 1
149
 
150
- # Create a new dataframe from group_counts
151
- df_label_count = pd.DataFrame(list(group_counts.items()), columns=['Label', 'Count'])
152
 
153
- # Merge the label counts with the df_label DataFrame
154
- df_label_count = df_labels.merge(df_label_count, on='Label', how='left')
155
- st.write("df_label_count")
156
 
157
- # # Configure graph
158
- # fig = px.pie(df_labels,
159
- # names="Label",
160
- # values="Count",
161
- # title='Label Counts',
162
- # hover_name="Count",
163
- # color_discrete_sequence=px.colors.qualitative.Plotly
164
- # )
165
 
166
- # #Show plot
167
- # st.plotly_chart(fig, use_container_width=True)
168
 
169
- # ### Table
170
- st.table(df_vul[df_vul['Vulnerability Label'] != 'Other'])
171
 
172
  # vulnerability_analysis.vulnerability_display()
173
  # elif topic == 'Action':
 
34
  install_packages()
35
 
36
  import appStore.vulnerability_analysis as vulnerability_analysis
37
+ import appStore.target as target_analysis
38
  import appStore.doc_processing as processing
39
  from utils.uploadAndExample import add_upload
40
  from utils.vulnerability_classifier import label_dict
 
95
  # If there is data stored
96
  if 'key0' in st.session_state:
97
 
98
+ vulnerability_analysis.vulnerability_display()
99
+ target_analysis.target_display()
100
+
101
+ # ###################################################################
102
 
103
+ # #with st.sidebar:
104
+ # # topic = st.radio(
105
+ # # "Which category you want to explore?",
106
+ # # (['Vulnerability', 'Concrete targets/actions/measures']))
107
 
108
+ # #if topic == 'Vulnerability':
109
 
110
+ # # Assign dataframe a name
111
+ # df_vul = st.session_state['key0']
112
+ # st.write(df_vul)
113
 
114
+ # col1, col2 = st.columns([1,1])
115
 
116
+ # with col1:
117
 
118
+ # # Header
119
+ # st.subheader("Explore references to vulnerable groups:")
120
 
121
+ # # Text
122
+ # num_paragraphs = len(df_vul['Vulnerability Label'])
123
+ # num_references = df_vul['Vulnerability Label'].apply(lambda x: 'Other' not in x).sum()
124
 
125
+ # st.markdown(f"""<div style="text-align: justify;"> The document contains a
126
+ # total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
127
+ # We identified <span style="color: red;">{num_references}</span>
128
+ # references to vulnerable groups.</div>
129
+ # <br>
130
+ # In the pie chart on the right you can see the distribution of the different
131
+ # groups defined. For a more detailed view in the text, see the paragraphs and
132
+ # their respective labels in the table below.</div>""", unsafe_allow_html=True)
133
+
134
+ # with col2:
135
 
136
+ # ### Bar chart
137
 
138
+ # # # Create a df that stores all the labels
139
+ # df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
140
 
141
+ # # Count how often each label appears in the "Vulnerability Labels" column
142
+ # group_counts = {}
143
 
144
+ # # Iterate through each sublist
145
+ # for index, row in df_vul.iterrows():
146
 
147
+ # # Iterate through each group in the sublist
148
+ # for sublist in row['Vulnerability Label']:
149
 
150
+ # # Update the count in the dictionary
151
+ # group_counts[sublist] = group_counts.get(sublist, 0) + 1
152
 
153
+ # # Create a new dataframe from group_counts
154
+ # df_label_count = pd.DataFrame(list(group_counts.items()), columns=['Label', 'Count'])
155
 
156
+ # # Merge the label counts with the df_label DataFrame
157
+ # df_label_count = df_labels.merge(df_label_count, on='Label', how='left')
158
+ # st.write("df_label_count")
159
 
160
+ # # # Configure graph
161
+ # # fig = px.pie(df_labels,
162
+ # # names="Label",
163
+ # # values="Count",
164
+ # # title='Label Counts',
165
+ # # hover_name="Count",
166
+ # # color_discrete_sequence=px.colors.qualitative.Plotly
167
+ # # )
168
 
169
+ # # #Show plot
170
+ # # st.plotly_chart(fig, use_container_width=True)
171
 
172
+ # # ### Table
173
+ # st.table(df_vul[df_vul['Vulnerability Label'] != 'Other'])
174
 
175
  # vulnerability_analysis.vulnerability_display()
176
  # elif topic == 'Action':