Rename utils/utils_target_classifier.py to utils/target_classifier.py
Browse files
utils/{utils_target_classifier.py → target_classifier.py}
RENAMED
@@ -10,8 +10,8 @@ from transformers import pipeline
|
|
10 |
|
11 |
## Labels dictionary ###
|
12 |
_lab_dict = {
|
13 |
-
'
|
14 |
-
'
|
15 |
}
|
16 |
|
17 |
@st.cache_resource
|
@@ -53,9 +53,8 @@ def target_classification(haystack_doc:pd.DataFrame,
|
|
53 |
)->Tuple[DataFrame,Series]:
|
54 |
"""
|
55 |
Text-Classification on the list of texts provided. Classifier provides the
|
56 |
-
most appropriate label for each text.
|
57 |
-
|
58 |
-
Params
|
59 |
---------
|
60 |
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
61 |
contains the list of paragraphs in different format,here the list of
|
@@ -70,7 +69,7 @@ def target_classification(haystack_doc:pd.DataFrame,
|
|
70 |
x: Series object with the unique SDG covered in the document uploaded and
|
71 |
the number of times it is covered/discussed/count_of_paragraphs.
|
72 |
"""
|
73 |
-
logging.info("Working on
|
74 |
if not classifier_model:
|
75 |
classifier_model = st.session_state['target_classifier']
|
76 |
|
|
|
10 |
|
11 |
## Labels dictionary ###
|
12 |
_lab_dict = {
|
13 |
+
'0':'NO',
|
14 |
+
'1':'YES',
|
15 |
}
|
16 |
|
17 |
@st.cache_resource
|
|
|
53 |
)->Tuple[DataFrame,Series]:
|
54 |
"""
|
55 |
Text-Classification on the list of texts provided. Classifier provides the
|
56 |
+
most appropriate label for each text. There labels indicate whether the paragraph
|
57 |
+
references a specific action, target or measure in the paragraph.
|
|
|
58 |
---------
|
59 |
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
60 |
contains the list of paragraphs in different format,here the list of
|
|
|
69 |
x: Series object with the unique SDG covered in the document uploaded and
|
70 |
the number of times it is covered/discussed/count_of_paragraphs.
|
71 |
"""
|
72 |
+
logging.info("Working on action/target extraction")
|
73 |
if not classifier_model:
|
74 |
classifier_model = st.session_state['target_classifier']
|
75 |
|