from typing import List, Tuple from typing_extensions import Literal import logging import pandas as pd from pandas import DataFrame, Series from utils.config import getconfig from utils.preprocessing import processingpipeline import streamlit as st from setfit import SetFitModel from transformers import pipeline ## Labels dictionary ### label_dict = { '0':'NO', '1':'YES', } def get_target_labels(preds): """ Function that takes the numerical predictions as an input and returns a list of the labels. """ # Turn into list preds_list = preds.to_list() # Get label names predictions_names=[] # loop through each prediction for ele in preds_list: # see if there is a value 1 and retrieve index try: index_of_one = ele.index(1) except ValueError: index_of_one = "NA" # Retrieve the name of the label (if no prediction made = NA) if index_of_one != "NA": name = label_dict[index_of_one] else: name = "Other" # Append name to list predictions_names.append(name) return predictions_names @st.cache_resource def load_targetClassifier(config_file:str = None, classifier_name:str = None): """ loads the document classifier using haystack, where the name/path of model in HF-hub as string is used to fetch the model object.Either configfile or model should be passed. 1. https://docs.haystack.deepset.ai/reference/document-classifier-api 2. https://docs.haystack.deepset.ai/docs/document_classifier Params -------- config_file: config file path from which to read the model name classifier_name: if modelname is passed, it takes a priority if not \ found then will look for configfile, else raise error. Return: document classifier model """ if not classifier_name: if not config_file: logging.warning("Pass either model name or config file") return else: config = getconfig(config_file) classifier_name = config.get('target','MODEL') logging.info("Loading classifier") # Loading classifier doc_classifier = SetFitModel.from_pretrained("leavoigt/vulnerability_target") return doc_classifier @st.cache_data def target_classification(haystack_doc:pd.DataFrame, threshold:float = 0.5, classifier_model:pipeline= None )->Tuple[DataFrame,Series]: """ Text-Classification on the list of texts provided. Classifier provides the most appropriate label for each text. There labels indicate whether the paragraph references a specific action, target or measure in the paragraph. --------- haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline contains the list of paragraphs in different format,here the list of Haystack Documents is used. threshold: threshold value for the model to keep the results from classifier classifiermodel: you can pass the classifier model directly,which takes priority however if not then looks for model in streamlit session. In case of streamlit avoid passing the model directly. Returns ---------- df: Dataframe with two columns['SDG:int', 'text'] x: Series object with the unique SDG covered in the document uploaded and the number of times it is covered/discussed/count_of_paragraphs. """ logging.info("Working on target/action identification") haystack_doc['Target Label'] = 'NA' st.write("haystack_doc") st.write(haystack_doc) if not classifier_model: st.write("No classifier_model") classifier_model = st.session_state['target_classifier'] st.write("classifier model defined") # Get predictions predictions = classifier_model(list(haystack_doc.text)) st.write("predictions made") st.write(predictions) # Get labels for predictions pred_labels = get_target_labels(predictions) st.write("pred_labels") st.write(pred_labels) # Save labels haystack_doc['Target Label'] = pred_labels return haystack_doc # logging.info("Working on action/target extraction") # if not classifier_model: # # classifier_model = st.session_state['target_classifier'] # # results = classifier_model(list(haystack_doc.text)) # # labels_= [(l[0]['label'], # # l[0]['score']) for l in results] # # df1 = DataFrame(labels_, columns=["Target Label","Target Score"]) # # df = pd.concat([haystack_doc,df1],axis=1) # # df = df.sort_values(by="Target Score", ascending=False).reset_index(drop=True) # # df['Target Score'] = df['Target Score'].round(2) # # df.index += 1 # # # df['Label_def'] = df['Target Label'].apply(lambda i: _lab_dict[i])