from haystack.nodes import TransformersDocumentClassifier from haystack.schema import Document from typing import List, Tuple from typing_extensions import Literal import logging import pandas as pd from pandas import DataFrame, Series from utils.checkconfig import getconfig from utils.streamlitcheck import check_streamlit from utils.preprocessing import processingpipeline try: import streamlit as st except ImportError: logging.info("Streamlit not installed") ## Labels dictionary ### _lab_dict = {0: 'Agricultural communities', 1: 'Children', 2: 'Coastal communities', 3: 'Ethnic, racial or other minorities', 4: 'Fishery communities', 5: 'Informal sector workers', 6: 'Members of indigenous and local communities', 7: 'Migrants and displaced persons', 8: 'Older persons', 9: 'Other', 10: 'Persons living in poverty', 11: 'Persons with disabilities', 12: 'Persons with pre-existing health conditions', 13: 'Residents of drought-prone regions', 14: 'Rural populations', 15: 'Sexual minorities (LGBTQI+)', 16: 'Urban populations', 17: 'Women and other genders'} @st.cache(allow_output_mutation=True) def load_Classifier(config_file:str = None, classifier_name:str = None): """ loads the document classifier using haystack, where the name/path of model in HF-hub as string is used to fetch the model object.Either configfile or model should be passed. 1. https://docs.haystack.deepset.ai/reference/document-classifier-api 2. https://docs.haystack.deepset.ai/docs/document_classifier Params -------- config_file: config file path from which to read the model name classifier_name: if modelname is passed, it takes a priority if not \ found then will look for configfile, else raise error. Return: document classifier model """ if not classifier_name: if not config_file: logging.warning("Pass either model name or config file") return else: config = getconfig(config_file) classifier_name = config.get('vulnerability','MODEL') logging.info("Loading classifier") doc_classifier = TransformersDocumentClassifier( model_name_or_path=classifier_name, task="text-classification") return doc_classifier @st.cache(allow_output_mutation=True) def classification(haystack_doc:List[Document], threshold:float = 0.8, classifier_model:TransformersDocumentClassifier= None )->Tuple[DataFrame,Series]: """ Text-Classification on the list of texts provided. Classifier provides the most appropriate label for each text. these labels are in terms of if text belongs to which particular Sustainable Devleopment Goal (SDG). Params --------- haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline contains the list of paragraphs in different format,here the list of Haystack Documents is used. threshold: threshold value for the model to keep the results from classifier classifiermodel: you can pass the classifier model directly,which takes priority however if not then looks for model in streamlit session. In case of streamlit avoid passing the model directly. Returns ---------- df: Dataframe with two columns['SDG:int', 'text'] x: Series object with the unique SDG covered in the document uploaded and the number of times it is covered/discussed/count_of_paragraphs. """ logging.info("Working on Vulnerability Classification") if not classifier_model: if check_streamlit(): classifier_model = st.session_state['vulnerability_classifier'] else: logging.warning("No streamlit envinornment found, Pass the classifier") return results = classifier_model.predict(haystack_doc) labels_= [(l.meta['classification']['label'], l.meta['classification']['score'],l.content,) for l in results] df = DataFrame(labels_, columns=["Vulnerability","Relevancy","text"]) df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True) df.index += 1 df =df[df['Relevancy']>threshold] # creating the dataframe for value counts of SDG, along with 'title' of SDGs x = df['Vulnerability'].value_counts() x = x.rename('count') x = x.rename_axis('Vulnerability').reset_index() x["Vulnerability"] = pd.to_numeric(x["Vulnerability"]) x = x.sort_values(by=['count'], ascending=False) x['SDG_name'] = x['Vulnerability'].apply(lambda x: _lab_dict[x]) x['SDG_Num'] = x['Vulnerability'].apply(lambda x: "Vulnerability "+str(x)) df['Vulnerability'] = pd.to_numeric(df['Vulnerability']) df = df.sort_values('Vulnerability') return df, x def runSDGPreprocessingPipeline(file_name:str, file_path:str, split_by: Literal["sentence", "word"] = 'sentence', split_length:int = 2, split_respect_sentence_boundary:bool = False, split_overlap:int = 0,remove_punc:bool = False)->List[Document]: """ creates the pipeline and runs the preprocessing pipeline, the params for pipeline are fetched from paramconfig Params ------------ file_name: filename, in case of streamlit application use st.session_state['filename'] file_path: filepath, in case of streamlit application use st.session_state['filepath'] split_by: document splitting strategy either as word or sentence split_length: when synthetically creating the paragrpahs from document, it defines the length of paragraph. split_respect_sentence_boundary: Used when using 'word' strategy for splititng of text. split_overlap: Number of words or sentences that overlap when creating the paragraphs. This is done as one sentence or 'some words' make sense when read in together with others. Therefore the overlap is used. remove_punc: to remove all Punctuation including ',' and '.' or not Return -------------- List[Document]: When preprocessing pipeline is run, the output dictionary has four objects. For the Haysatck implementation of SDG classification we, need to use the List of Haystack Document, which can be fetched by key = 'documents' on output. """ sdg_processing_pipeline = processingpipeline() output_sdg_pre = sdg_processing_pipeline.run(file_paths = file_path, params= {"FileConverter": {"file_path": file_path, \ "file_name": file_name}, "UdfPreProcessor": {"remove_punc": remove_punc, \ "split_by": split_by, \ "split_length":split_length,\ "split_overlap": split_overlap, \ "split_respect_sentence_boundary":split_respect_sentence_boundary}}) return output_sdg_pre