Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from huggingface_hub import InferenceClient | |
import uvicorn | |
app = FastAPI() | |
client = InferenceClient("SanjiWatsuki/Silicon-Maid-7B") | |
# client = InferenceClient("TheBloke/Mixtral-8x7B-Instruct-v0.1") | |
# client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") | |
class Item(BaseModel): | |
prompt: str | |
history: list | |
system_prompt: str | |
temperature: float = 0.0 | |
max_new_tokens: int = 1048 | |
top_p: float = 0.15 | |
repetition_penalty: float = 1.0 | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(item: Item): | |
temperature = float(item.temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(item.top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=item.max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=item.repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=False, return_full_text=False) | |
# output = "" | |
# for response in stream: | |
# output += response.token.text | |
# return output | |
return stream | |
async def generate_text(item: Item): | |
response = generate(item) | |
return StreamingResponse(response, media_type="text/event-stream") | |