import streamlit as st import json import torch from transformers import AutoTokenizer from modelling_cnn import CNNForNER, SentimentCNNModel # Load the Yoruba NER model ner_model_name = "./my_model/pytorch_model.bin" model_ner = "Testys/cnn_yor_ner" ner_tokenizer = AutoTokenizer.from_pretrained(model_ner) with open("./my_model/config.json", "r") as f: ner_config = json.load(f) ner_model = CNNForNER( pretrained_model_name=ner_config["pretrained_model_name"], num_classes=ner_config["num_classes"] ) ner_model.load_state_dict(torch.load(ner_model_name, map_location=torch.device('cpu'))) ner_model.eval() # Load the Yoruba sentiment analysis model sentiment_model_name = "./sent_model/sent_pytorch_model.bin" model_sent = "Testys/cnn_sent_yor" sentiment_tokenizer = AutoTokenizer.from_pretrained(model_sent) with open("./sent_model/config.json", "r") as f: sentiment_config = json.load(f) sentiment_model = SentimentCNNModel( transformer_model_name=sentiment_config["pretrained_model_name"], num_classes=sentiment_config["num_classes"] ) sentiment_model.load_state_dict(torch.load(sentiment_model_name, map_location=torch.device('cpu'))) sentiment_model.eval() def analyze_text(text): # Tokenize input text for NER ner_inputs = ner_tokenizer(text, return_tensors="pt") # Perform Named Entity Recognition with torch.no_grad(): ner_outputs = ner_model(**ner_inputs) ner_predictions = torch.argmax(ner_outputs, dim=-1) ner_labels = ner_predictions.tolist() # Tokenize input text for sentiment analysis sentiment_inputs = sentiment_tokenizer(text, return_tensors="pt") # Perform sentiment analysis with torch.no_grad(): sentiment_outputs = sentiment_model(**sentiment_inputs) sentiment_probabilities = torch.softmax(sentiment_outputs, dim=1) sentiment_scores = sentiment_probabilities.tolist() sentiment = sentiment_config["id2label"][torch.argmax(sentiment_outputs).item()] return ner_labels, sentiment def main(): st.title("YorubaCNN Models for NER and Sentiment Analysis") # Input text text = st.text_area("Enter Yoruba text", "") if st.button("Analyze"): if text: ner_labels, sentiment_scores = analyze_text(text) # Display Named Entities st.subheader("Named Entities") for label in ner_labels: st.write(f"- {label}") # Display Sentiment Analysis st.subheader("Sentiment Analysis") st.write(f"Sentiment: {sentiment_scores}") if __name__ == "__main__": main()