from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler import gradio as gr import torch from PIL import Image model_id = 'SG161222/Realistic_Vision_V5.0_noVAE' prefix = 'RAW photo,' scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, scheduler=scheduler) pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, scheduler=scheduler) if torch.cuda.is_available(): pipe = pipe.to("cuda") pipe_i2i = pipe_i2i.to("cuda") def error_str(error, title="Error"): return f"""#### {title} {error}""" if error else "" def _parse_args(prompt, generator): parser = argparse.ArgumentParser( description="making it work." ) parser.add_argument( "--no-half-vae", help="no half vae" ) cmdline_args = parser.parse_args() command = cmdline_args.command conf_file = cmdline_args.conf_file conf_args = Arguments(conf_file) opt = conf_args.readArguments() if cmdline_args.config_overrides: for config_override in cmdline_args.config_overrides.split(";"): config_override = config_override.strip() if config_override: var_val = config_override.split("=") assert ( len(var_val) == 2 ), f"Config override '{var_val}' does not have the form 'VAR=val'" conf_args.add_opt(opt, var_val[0], var_val[1], force_override=True) def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=False): generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None prompt = f"{prefix} {prompt}" if auto_prefix else prompt try: if img is not None: return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None else: return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None except Exception as e: return None, error_str(e) def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): result = pipe( prompt, negative_prompt = neg_prompt, num_inference_steps = int(steps), guidance_scale = guidance, width = width, height = height, generator = generator) return result.images[0] def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) result = pipe_i2i( prompt, negative_prompt = neg_prompt, init_image = img, num_inference_steps = int(steps), strength = strength, guidance_scale = guidance, width = width, height = height, generator = generator) return result.images[0] def fake_safety_checker(images, **kwargs): return result.images[0], [False] * len(images) pipe.safety_checker = fake_safety_checker css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: gr.HTML( f""" <div class="main-div"> <div> <h1 style="color:orange;">📷 Realistic Vision V5.0 📸</h1> </div> <p> Demo for <a href="https://huggingface.co/SG161222/Realistic_Vision_V5.0_noVAE">Realistic Vision V5.0</a> Stable Diffusion model by <a href="https://huggingface.co/SG161222/"><abbr title="SG1611222">Eugene</abbr></a>. {"" if prefix else ""} Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU ⚡</b>"}. </p> <p>Please use the prompt template below to get an example of the desired generation results: </p> <b>Prompt</b>: <details><code> * subject *, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3 <br> <br> <q><i> Example: a close up portrait photo of 26 y.o woman in wastelander clothes, long haircut, pale skin, slim body, background is city ruins, <br> (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3 </i></q> </code></details> <br> <b>Negative Prompt</b>: <details><code> (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, <br> low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, <br> dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, <br> extra legs, fused fingers, too many fingers, long neck </code></details> <br> Have Fun & Enjoy ⚡ <a href="https://www.thafx.com"><abbr title="Website">//THAFX</abbr></a> <br> </div> """ ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False,max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False) generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) image_out = gr.Image(height=512) error_output = gr.Markdown() with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically (RAW photo,)", value=prefix, visible=prefix) with gr.Row(): guidance = gr.Slider(label="Guidance scale", value=5, maximum=15) steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1) with gr.Row(): width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) with gr.Tab("Image to image"): with gr.Group(): image = gr.Image(label="Image", height=256, tool="editor", type="pil") strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False) inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix] outputs = [image_out, error_output] prompt.submit(inference, inputs=inputs, outputs=outputs) generate.click(inference, inputs=inputs, outputs=outputs) demo.queue(concurrency_count=1) demo.launch()