Spaces:
Runtime error
Runtime error
import os | |
import time | |
from typing import List, Tuple, Optional, Dict | |
import google.generativeai as genai | |
import gradio as gr | |
from PIL import Image | |
print("google-generativeai:", genai.__version__) | |
GGL_API_KEY = os.environ.get("GGL_API_KEY") | |
gglusr = os.environ.get("GGL_USR") | |
gglpwd = os.environ.get("GGL_PWD") | |
TITLE = """<h2 align="center">🫐Blueberry-AI ✨Gemini Chat🫐</h2>""" | |
IMAGE_WIDTH = 512 | |
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: | |
if not stop_sequences: | |
return None | |
return [sequence.strip() for sequence in stop_sequences.split(",")] | |
def preprocess_image(image: Image.Image) -> Optional[Image.Image]: | |
image_height = int(image.height * IMAGE_WIDTH / image.width) | |
return image.resize((IMAGE_WIDTH, image_height)) | |
def preprocess_chat_history( | |
history: List[Tuple[Optional[str], Optional[str]]] | |
) -> List[Dict[str, List[str]]]: | |
messages = [] | |
for user_message, model_message in history: | |
if user_message is not None: | |
messages.append({'role': 'user', 'parts': [user_message]}) | |
if model_message is not None: | |
messages.append({'role': 'model', 'parts': [model_message]}) | |
return messages | |
def user(text_prompt: str, chatbot: List[Tuple[str, str]]): | |
return "", chatbot + [[text_prompt, None]] | |
def bot( | |
image_prompt: Optional[Image.Image], | |
temperature: float, | |
max_output_tokens: int, | |
stop_sequences: str, | |
top_k: int, | |
top_p: float, | |
chatbot: List[Tuple[str, str]] | |
): | |
text_prompt = chatbot[-1][0] | |
genai.configure(api_key=GGL_API_KEY) | |
generation_config = genai.types.GenerationConfig( | |
temperature=temperature, | |
max_output_tokens=max_output_tokens, | |
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences), | |
top_k=top_k, | |
top_p=top_p) | |
if image_prompt is None: | |
model = genai.GenerativeModel('gemini-pro') | |
response = model.generate_content( | |
preprocess_chat_history(chatbot), | |
stream=True, | |
generation_config=generation_config) | |
response.resolve() | |
else: | |
image_prompt = preprocess_image(image_prompt) | |
model = genai.GenerativeModel('gemini-pro-vision') | |
response = model.generate_content( | |
contents=[text_prompt, image_prompt], | |
stream=True, | |
generation_config=generation_config) | |
response.resolve() | |
# streaming effect | |
chatbot[-1][1] = "" | |
for chunk in response: | |
for i in range(0, len(chunk.text), 10): | |
section = chunk.text[i:i + 10] | |
chatbot[-1][1] += section | |
time.sleep(0.01) | |
yield chatbot | |
image_prompt_component = gr.Image(type="pil", label="Image", scale=1, height=400) | |
chatbot_component = gr.Chatbot( | |
label='Gemini', | |
bubble_full_width=False, | |
avatar_images=("./usr.png", "./bot.png"), | |
likeable=True, | |
show_copy_button=True, | |
scale=2, | |
height=400 | |
) | |
text_prompt_component = gr.Textbox( | |
placeholder="Hi there!", | |
label="Ask me anything and press Enter" | |
) | |
run_button_component = gr.Button() | |
temperature_component = gr.Slider( | |
minimum=0, | |
maximum=1.0, | |
value=0.4, | |
step=0.05, | |
label="Temperature", | |
info=( | |
"Temperature controls the degree of randomness in token selection. Lower " | |
"temperatures are good for prompts that expect a true or correct response, " | |
"while higher temperatures can lead to more diverse or unexpected results. " | |
)) | |
max_output_tokens_component = gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=1024, | |
step=1, | |
label="Token limit", | |
info=( | |
"Token limit determines the maximum amount of text output from one prompt. A " | |
"token is approximately four characters. The default value is 2048." | |
)) | |
stop_sequences_component = gr.Textbox( | |
label="Add stop sequence", | |
value="", | |
type="text", | |
placeholder="STOP, END", | |
info=( | |
"A stop sequence is a series of characters (including spaces) that stops " | |
"response generation if the model encounters it. The sequence is not included " | |
"as part of the response. You can add up to five stop sequences." | |
)) | |
top_k_component = gr.Slider( | |
minimum=1, | |
maximum=40, | |
value=32, | |
step=1, | |
label="Top-K", | |
info=( | |
"Top-k changes how the model selects tokens for output. A top-k of 1 means the " | |
"selected token is the most probable among all tokens in the model’s " | |
"vocabulary (also called greedy decoding), while a top-k of 3 means that the " | |
"next token is selected from among the 3 most probable tokens (using " | |
"temperature)." | |
)) | |
top_p_component = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=1, | |
step=0.01, | |
label="Top-P", | |
info=( | |
"Top-p changes how the model selects tokens for output. Tokens are selected " | |
"from most probable to least until the sum of their probabilities equals the " | |
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, " | |
"and .1 and the top-p value is .5, then the model will select either A or B as " | |
"the next token (using temperature). " | |
)) | |
user_inputs = [ | |
text_prompt_component, | |
chatbot_component | |
] | |
bot_inputs = [ | |
image_prompt_component, | |
temperature_component, | |
max_output_tokens_component, | |
stop_sequences_component, | |
top_k_component, | |
top_p_component, | |
chatbot_component | |
] | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
with gr.Column(): | |
with gr.Row(): | |
image_prompt_component.render() | |
chatbot_component.render() | |
text_prompt_component.render() | |
run_button_component.render() | |
with gr.Accordion("Parameters", open=False): | |
temperature_component.render() | |
max_output_tokens_component.render() | |
stop_sequences_component.render() | |
with gr.Accordion("Advanced", open=False): | |
top_k_component.render() | |
top_p_component.render() | |
run_button_component.click( | |
fn=user, | |
inputs=user_inputs, | |
outputs=[text_prompt_component, chatbot_component], | |
queue=False | |
).then( | |
fn=bot, inputs=bot_inputs, outputs=[chatbot_component], | |
) | |
text_prompt_component.submit( | |
fn=user, | |
inputs=user_inputs, | |
outputs=[text_prompt_component, chatbot_component], | |
queue=False | |
).then( | |
fn=bot, inputs=bot_inputs, outputs=[chatbot_component], | |
) | |
demo.queue(max_size=99).launch(auth=(gglusr, gglpwd),show_api=False, debug=False, show_error=True) | |