File size: 12,213 Bytes
ca46a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06fbec3
ca46a75
4be6b70
 
 
 
 
 
 
 
 
 
1c25fe3
 
 
 
 
 
06fbec3
 
 
4be6b70
ca46a75
1c25fe3
 
 
 
 
 
06fbec3
 
 
 
 
1c25fe3
06fbec3
1c25fe3
 
 
 
 
 
06fbec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c25fe3
 
 
ca46a75
 
 
 
 
 
 
4be6b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca46a75
1c25fe3
 
 
 
 
 
 
 
ca46a75
 
 
 
1c25fe3
 
 
 
 
 
06fbec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca46a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06fbec3
 
1c25fe3
 
 
 
06fbec3
 
ca46a75
06fbec3
 
ca46a75
 
 
06fbec3
ca46a75
 
 
 
 
 
 
 
1c25fe3
 
 
06fbec3
 
1c25fe3
 
 
 
 
 
 
 
 
 
06fbec3
 
1c25fe3
 
 
 
 
 
 
 
 
 
06fbec3
1c25fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06fbec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#!/usr/bin/env python
# -*- coding: utf-8 -*-
r"""
@DATE: 2024/9/5 21:21
@File: human_matting.py
@IDE: pycharm
@Description:
    人像抠图
"""
import numpy as np
from PIL import Image
import onnxruntime
from .tensor2numpy import NNormalize, NTo_Tensor, NUnsqueeze
from .context import Context
import cv2
import os
from time import time


WEIGHTS = {
    "hivision_modnet": os.path.join(
        os.path.dirname(__file__), "weights", "hivision_modnet.onnx"
    ),
    "modnet_photographic_portrait_matting": os.path.join(
        os.path.dirname(__file__),
        "weights",
        "modnet_photographic_portrait_matting.onnx",
    ),
    "mnn_hivision_modnet": os.path.join(
        os.path.dirname(__file__),
        "weights",
        "mnn_hivision_modnet.mnn",
    ),
    "rmbg-1.4": os.path.join(os.path.dirname(__file__), "weights", "rmbg-1.4.onnx"),
    "birefnet-v1-lite": os.path.join(
        os.path.dirname(__file__), "weights", "birefnet-v1-lite.onnx"
    ),
}

ONNX_DEVICE = (
    "CUDAExecutionProvider"
    if onnxruntime.get_device() == "GPU"
    else "CPUExecutionProvider"
)

HIVISION_MODNET_SESS = None
MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS = None
RMBG_SESS = None
BIREFNET_V1_LITE_SESS = None


def load_onnx_model(checkpoint_path, set_cpu=False):
    providers = (
        ["CUDAExecutionProvider", "CPUExecutionProvider"]
        if ONNX_DEVICE == "CUDAExecutionProvider"
        else ["CPUExecutionProvider"]
    )

    if set_cpu:
        sess = onnxruntime.InferenceSession(
            checkpoint_path, providers=["CPUExecutionProvider"]
        )
    else:
        try:
            sess = onnxruntime.InferenceSession(checkpoint_path, providers=providers)
        except Exception as e:
            if ONNX_DEVICE == "CUDAExecutionProvider":
                print(f"Failed to load model with CUDAExecutionProvider: {e}")
                print("Falling back to CPUExecutionProvider")
                # 尝试使用CPU加载模型
                sess = onnxruntime.InferenceSession(
                    checkpoint_path, providers=["CPUExecutionProvider"]
                )
            else:
                raise e  # 如果是CPU执行失败,重新抛出异常

    return sess


def extract_human(ctx: Context):
    """
    人像抠图
    :param ctx: 上下文
    """
    # 抠图
    matting_image = get_modnet_matting(ctx.processing_image, WEIGHTS["hivision_modnet"])
    # 修复抠图
    ctx.processing_image = hollow_out_fix(matting_image)
    ctx.matting_image = ctx.processing_image.copy()


def extract_human_modnet_photographic_portrait_matting(ctx: Context):
    """
    人像抠图
    :param ctx: 上下文
    """
    # 抠图
    matting_image = get_modnet_matting(
        ctx.processing_image, WEIGHTS["modnet_photographic_portrait_matting"]
    )
    # 修复抠图
    ctx.processing_image = matting_image
    ctx.matting_image = ctx.processing_image.copy()


def extract_human_mnn_modnet(ctx: Context):
    matting_image = get_mnn_modnet_matting(
        ctx.processing_image, WEIGHTS["mnn_hivision_modnet"]
    )
    ctx.processing_image = hollow_out_fix(matting_image)
    ctx.matting_image = ctx.processing_image.copy()


def extract_human_rmbg(ctx: Context):
    matting_image = get_rmbg_matting(ctx.processing_image, WEIGHTS["rmbg-1.4"])
    ctx.processing_image = matting_image
    ctx.matting_image = ctx.processing_image.copy()


# def extract_human_birefnet_portrait(ctx: Context):
#     matting_image = get_birefnet_portrait_matting(
#         ctx.processing_image, WEIGHTS["birefnet-portrait"]
#     )
#     ctx.processing_image = matting_image
#     ctx.matting_image = ctx.processing_image.copy()


def extract_human_birefnet_lite(ctx: Context):
    matting_image = get_birefnet_portrait_matting(
        ctx.processing_image, WEIGHTS["birefnet-v1-lite"]
    )
    ctx.processing_image = matting_image
    ctx.matting_image = ctx.processing_image.copy()


def hollow_out_fix(src: np.ndarray) -> np.ndarray:
    """
    修补抠图区域,作为抠图模型精度不够的补充
    :param src:
    :return:
    """
    b, g, r, a = cv2.split(src)
    src_bgr = cv2.merge((b, g, r))
    # -----------padding---------- #
    add_area = np.zeros((10, a.shape[1]), np.uint8)
    a = np.vstack((add_area, a, add_area))
    add_area = np.zeros((a.shape[0], 10), np.uint8)
    a = np.hstack((add_area, a, add_area))
    # -------------end------------ #
    _, a_threshold = cv2.threshold(a, 127, 255, 0)
    a_erode = cv2.erode(
        a_threshold,
        kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)),
        iterations=3,
    )
    contours, hierarchy = cv2.findContours(
        a_erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
    )
    contours = [x for x in contours]
    # contours = np.squeeze(contours)
    contours.sort(key=lambda c: cv2.contourArea(c), reverse=True)
    a_contour = cv2.drawContours(np.zeros(a.shape, np.uint8), contours[0], -1, 255, 2)
    # a_base = a_contour[1:-1, 1:-1]
    h, w = a.shape[:2]
    mask = np.zeros(
        [h + 2, w + 2], np.uint8
    )  # mask 必须行和列都加 2,且必须为 uint8 单通道阵列
    cv2.floodFill(a_contour, mask=mask, seedPoint=(0, 0), newVal=255)
    a = cv2.add(a, 255 - a_contour)
    return cv2.merge((src_bgr, a[10:-10, 10:-10]))


def image2bgr(input_image):
    if len(input_image.shape) == 2:
        input_image = input_image[:, :, None]
    if input_image.shape[2] == 1:
        result_image = np.repeat(input_image, 3, axis=2)
    elif input_image.shape[2] == 4:
        result_image = input_image[:, :, 0:3]
    else:
        result_image = input_image

    return result_image


def read_modnet_image(input_image, ref_size=512):
    im = Image.fromarray(np.uint8(input_image))
    width, length = im.size[0], im.size[1]
    im = np.asarray(im)
    im = image2bgr(im)
    im = cv2.resize(im, (ref_size, ref_size), interpolation=cv2.INTER_AREA)
    im = NNormalize(im, mean=np.array([0.5, 0.5, 0.5]), std=np.array([0.5, 0.5, 0.5]))
    im = NUnsqueeze(NTo_Tensor(im))

    return im, width, length


def get_modnet_matting(input_image, checkpoint_path, ref_size=512):
    global HIVISION_MODNET_SESS

    if not os.path.exists(checkpoint_path):
        print(f"Checkpoint file not found: {checkpoint_path}")
        return None

    if HIVISION_MODNET_SESS is None:
        HIVISION_MODNET_SESS = load_onnx_model(checkpoint_path, set_cpu=True)

    input_name = HIVISION_MODNET_SESS.get_inputs()[0].name
    output_name = HIVISION_MODNET_SESS.get_outputs()[0].name

    im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size)

    matte = HIVISION_MODNET_SESS.run([output_name], {input_name: im})
    matte = (matte[0] * 255).astype("uint8")
    matte = np.squeeze(matte)
    mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
    b, g, r = cv2.split(np.uint8(input_image))

    output_image = cv2.merge((b, g, r, mask))

    return output_image


def get_rmbg_matting(input_image: np.ndarray, checkpoint_path, ref_size=1024):
    global RMBG_SESS

    if not os.path.exists(checkpoint_path):
        print(f"Checkpoint file not found: {checkpoint_path}")
        return None

    def resize_rmbg_image(image):
        image = image.convert("RGB")
        model_input_size = (ref_size, ref_size)
        image = image.resize(model_input_size, Image.BILINEAR)
        return image

    if RMBG_SESS is None:
        RMBG_SESS = load_onnx_model(checkpoint_path, set_cpu=True)

    orig_image = Image.fromarray(input_image)
    image = resize_rmbg_image(orig_image)
    im_np = np.array(image).astype(np.float32)
    im_np = im_np.transpose(2, 0, 1)  # Change to CxHxW format
    im_np = np.expand_dims(im_np, axis=0)  # Add batch dimension
    im_np = im_np / 255.0  # Normalize to [0, 1]
    im_np = (im_np - 0.5) / 0.5  # Normalize to [-1, 1]

    # Inference
    result = RMBG_SESS.run(None, {RMBG_SESS.get_inputs()[0].name: im_np})[0]

    # Post process
    result = np.squeeze(result)
    ma = np.max(result)
    mi = np.min(result)
    result = (result - mi) / (ma - mi)  # Normalize to [0, 1]

    # Convert to PIL image
    im_array = (result * 255).astype(np.uint8)
    pil_im = Image.fromarray(
        im_array, mode="L"
    )  # Ensure mask is single channel (L mode)

    # Resize the mask to match the original image size
    pil_im = pil_im.resize(orig_image.size, Image.BILINEAR)

    # Paste the mask on the original image
    new_im = Image.new("RGBA", orig_image.size, (0, 0, 0, 0))
    new_im.paste(orig_image, mask=pil_im)

    return np.array(new_im)


def get_mnn_modnet_matting(input_image, checkpoint_path, ref_size=512):
    if not os.path.exists(checkpoint_path):
        print(f"Checkpoint file not found: {checkpoint_path}")
        return None

    try:
        import MNN.expr as expr
        import MNN.nn as nn
    except ImportError as e:
        raise ImportError(
            "The MNN module is not installed or there was an import error. Please ensure that the MNN library is installed by using the command 'pip install mnn'."
        ) from e

    config = {}
    config["precision"] = "low"  # 当硬件支持(armv8.2)时使用fp16推理
    config["backend"] = 0  # CPU
    config["numThread"] = 4  # 线程数
    im, width, length = read_modnet_image(input_image, ref_size=512)
    rt = nn.create_runtime_manager((config,))
    net = nn.load_module_from_file(
        checkpoint_path, ["input1"], ["output1"], runtime_manager=rt
    )
    input_var = expr.convert(im, expr.NCHW)
    output_var = net.forward(input_var)
    matte = expr.convert(output_var, expr.NCHW)
    matte = matte.read()  # var转换为np
    matte = (matte * 255).astype("uint8")
    matte = np.squeeze(matte)
    mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
    b, g, r = cv2.split(np.uint8(input_image))

    output_image = cv2.merge((b, g, r, mask))

    return output_image


def get_birefnet_portrait_matting(input_image, checkpoint_path, ref_size=512):
    global BIREFNET_V1_LITE_SESS

    if not os.path.exists(checkpoint_path):
        print(f"Checkpoint file not found: {checkpoint_path}")
        return None

    def transform_image(image):
        image = image.resize((1024, 1024))  # Resize to 1024x1024
        image = (
            np.array(image, dtype=np.float32) / 255.0
        )  # Convert to numpy array and normalize to [0, 1]
        image = (image - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225]  # Normalize
        image = np.transpose(image, (2, 0, 1))  # Change from (H, W, C) to (C, H, W)
        image = np.expand_dims(image, axis=0)  # Add batch dimension
        return image.astype(np.float32)  # Ensure the output is float32

    orig_image = Image.fromarray(input_image)
    input_images = transform_image(
        orig_image
    )  # This will already have the correct shape

    # 记录加载onnx模型的开始时间
    load_start_time = time()

    if BIREFNET_V1_LITE_SESS is None:
        BIREFNET_V1_LITE_SESS = load_onnx_model(checkpoint_path, set_cpu=True)

    # 记录加载onnx模型的结束时间
    load_end_time = time()

    # 打印加载onnx模型所花的时间
    print(f"Loading ONNX model took {load_end_time - load_start_time:.4f} seconds")

    input_name = BIREFNET_V1_LITE_SESS.get_inputs()[0].name
    print(onnxruntime.get_device(), BIREFNET_V1_LITE_SESS.get_providers())

    time_st = time()
    pred_onnx = BIREFNET_V1_LITE_SESS.run(None, {input_name: input_images})[
        -1
    ]  # Use float32 input
    pred_onnx = np.squeeze(pred_onnx)  # Use numpy to squeeze
    result = 1 / (1 + np.exp(-pred_onnx))  # Sigmoid function using numpy
    print(f"Inference time: {time() - time_st:.4f} seconds")

    # Convert to PIL image
    im_array = (result * 255).astype(np.uint8)
    pil_im = Image.fromarray(
        im_array, mode="L"
    )  # Ensure mask is single channel (L mode)

    # Resize the mask to match the original image size
    pil_im = pil_im.resize(orig_image.size, Image.BILINEAR)

    # Paste the mask on the original image
    new_im = Image.new("RGBA", orig_image.size, (0, 0, 0, 0))
    new_im.paste(orig_image, mask=pil_im)

    return np.array(new_im)