Spaces:
Running
Running
File size: 8,417 Bytes
ca46a75 23cd1cf ca46a75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
r"""
@DATE: 2024/9/5 20:02
@File: photo_adjuster.py
@IDE: pycharm
@Description:
证件照调整
"""
from .context import Context
from .layout_calculator import generate_layout_photo
import hivision.creator.utils as U
import numpy as np
import math
import cv2
def adjust_photo(ctx: Context):
# Step1. 准备人脸参数
face_rect = ctx.face
standard_size = ctx.params.size
params = ctx.params
x, y = face_rect[0], face_rect[1]
w, h = face_rect[2], face_rect[3]
height, width = ctx.processing_image.shape[:2]
width_height_ratio = standard_size[0] / standard_size[1]
# Step2. 计算高级参数
face_center = (x + w / 2, y + h / 2) # 面部中心坐标
face_measure = w * h # 面部面积
crop_measure = (
face_measure / params.head_measure_ratio
) # 裁剪框面积:为面部面积的 5 倍
resize_ratio = crop_measure / (standard_size[0] * standard_size[1]) # 裁剪框缩放率
resize_ratio_single = math.sqrt(
resize_ratio
) # 长和宽的缩放率(resize_ratio 的开方)
crop_size = (
int(standard_size[0] * resize_ratio_single),
int(standard_size[1] * resize_ratio_single),
) # 裁剪框大小
# 裁剪框的定位信息
x1 = int(face_center[0] - crop_size[1] / 2)
y1 = int(face_center[1] - crop_size[0] * params.head_height_ratio)
y2 = y1 + crop_size[0]
x2 = x1 + crop_size[1]
# Step3, 裁剪框的调整
cut_image = IDphotos_cut(x1, y1, x2, y2, ctx.processing_image)
cut_image = cv2.resize(cut_image, (crop_size[1], crop_size[0]))
y_top, y_bottom, x_left, x_right = U.get_box(
cut_image.astype(np.uint8), model=2, correction_factor=0
) # 得到 cut_image 中人像的上下左右距离信息
# Step5. 判定 cut_image 中的人像是否处于合理的位置,若不合理,则处理数据以便之后调整位置
# 检测人像与裁剪框左边或右边是否存在空隙
if x_left > 0 or x_right > 0:
status_left_right = 1
cut_value_top = int(
((x_left + x_right) * width_height_ratio) / 2
) # 减去左右,为了保持比例,上下也要相应减少 cut_value_top
else:
status_left_right = 0
cut_value_top = 0
"""
检测人头顶与照片的顶部是否在合适的距离内:
- status==0: 距离合适,无需移动
- status=1: 距离过大,人像应向上移动
- status=2: 距离过小,人像应向下移动
"""
status_top, move_value = U.detect_distance(
y_top - cut_value_top,
crop_size[0],
max=params.head_top_range[0],
min=params.head_top_range[1],
)
# Step6. 对照片的第二轮裁剪
if status_left_right == 0 and status_top == 0:
result_image = cut_image
else:
result_image = IDphotos_cut(
x1 + x_left,
y1 + cut_value_top + status_top * move_value,
x2 - x_right,
y2 - cut_value_top + status_top * move_value,
ctx.processing_image,
)
# 换装参数准备
relative_x = x - (x1 + x_left)
relative_y = y - (y1 + cut_value_top + status_top * move_value)
# Step7. 当照片底部存在空隙时,下拉至底部
result_image, y_high = move(result_image.astype(np.uint8))
relative_y = relative_y + y_high # 更新换装参数
# Step8. 标准照与高清照转换
result_image_standard = standard_photo_resize(result_image, standard_size)
result_image_hd, resize_ratio_max = resize_image_by_min(
result_image, esp=max(600, standard_size[1])
)
# Step9. 参数准备 - 为换装服务
clothing_params = {
"relative_x": relative_x * resize_ratio_max,
"relative_y": relative_y * resize_ratio_max,
"w": w * resize_ratio_max,
"h": h * resize_ratio_max,
}
# Step7. 排版照参数获取
typography_arr, typography_rotate = generate_layout_photo(
input_height=standard_size[0], input_width=standard_size[1]
)
return (
result_image_hd,
result_image_standard,
clothing_params,
{
"arr": typography_arr,
"rotate": typography_rotate,
},
)
def IDphotos_cut(x1, y1, x2, y2, img):
"""
在图片上进行滑动裁剪,输入输出为
输入:一张图片 img,和裁剪框信息 (x1,x2,y1,y2)
输出:裁剪好的图片,然后裁剪框超出了图像范围,那么将用 0 矩阵补位
------------------------------------
x:裁剪框左上的横坐标
y:裁剪框左上的纵坐标
x2:裁剪框右下的横坐标
y2:裁剪框右下的纵坐标
crop_size:裁剪框大小
img:裁剪图像(numpy.array)
output_path:裁剪图片的输出路径
------------------------------------
"""
crop_size = (y2 - y1, x2 - x1)
"""
------------------------------------
temp_x_1:裁剪框左边超出图像部分
temp_y_1:裁剪框上边超出图像部分
temp_x_2:裁剪框右边超出图像部分
temp_y_2:裁剪框下边超出图像部分
------------------------------------
"""
temp_x_1 = 0
temp_y_1 = 0
temp_x_2 = 0
temp_y_2 = 0
if y1 < 0:
temp_y_1 = abs(y1)
y1 = 0
if y2 > img.shape[0]:
temp_y_2 = y2
y2 = img.shape[0]
temp_y_2 = temp_y_2 - y2
if x1 < 0:
temp_x_1 = abs(x1)
x1 = 0
if x2 > img.shape[1]:
temp_x_2 = x2
x2 = img.shape[1]
temp_x_2 = temp_x_2 - x2
# 生成一张全透明背景
print("crop_size:", crop_size)
background_bgr = np.full((crop_size[0], crop_size[1]), 255, dtype=np.uint8)
background_a = np.full((crop_size[0], crop_size[1]), 0, dtype=np.uint8)
background = cv2.merge(
(background_bgr, background_bgr, background_bgr, background_a)
)
background[
temp_y_1 : crop_size[0] - temp_y_2, temp_x_1 : crop_size[1] - temp_x_2
] = img[y1:y2, x1:x2]
return background
def move(input_image):
"""
裁剪主函数,输入一张 png 图像,该图像周围是透明的
"""
png_img = input_image # 获取图像
height, width, channels = png_img.shape # 高 y、宽 x
y_low, y_high, _, _ = U.get_box(png_img, model=2) # for 循环
base = np.zeros((y_high, width, channels), dtype=np.uint8) # for 循环
png_img = png_img[0 : height - y_high, :, :] # for 循环
png_img = np.concatenate((base, png_img), axis=0)
return png_img, y_high
def standard_photo_resize(input_image: np.array, size):
"""
input_image: 输入图像,即高清照
size: 标准照的尺寸
"""
resize_ratio = input_image.shape[0] / size[0]
resize_item = int(round(input_image.shape[0] / size[0]))
if resize_ratio >= 2:
for i in range(resize_item - 1):
if i == 0:
result_image = cv2.resize(
input_image,
(size[1] * (resize_item - i - 1), size[0] * (resize_item - i - 1)),
interpolation=cv2.INTER_AREA,
)
else:
result_image = cv2.resize(
result_image,
(size[1] * (resize_item - i - 1), size[0] * (resize_item - i - 1)),
interpolation=cv2.INTER_AREA,
)
else:
result_image = cv2.resize(
input_image, (size[1], size[0]), interpolation=cv2.INTER_AREA
)
return result_image
def resize_image_by_min(input_image, esp=600):
"""
将图像缩放为最短边至少为 esp 的图像。
:param input_image: 输入图像(OpenCV 矩阵)
:param esp: 缩放后的最短边长
:return: 缩放后的图像,缩放倍率
"""
height, width = input_image.shape[0], input_image.shape[1]
min_border = min(height, width)
if min_border < esp:
if height >= width:
new_width = esp
new_height = height * esp // width
else:
new_height = esp
new_width = width * esp // height
return (
cv2.resize(
input_image, (new_width, new_height), interpolation=cv2.INTER_AREA
),
new_height / height,
)
else:
return input_image, 1
|