Spaces:
Running
Running
File size: 21,745 Bytes
402b504 f8cafb8 88e96c2 f8cafb8 402b504 80a80fa 7173af9 402b504 88e96c2 402b504 1d213d9 402b504 88e96c2 402b504 0a3d586 402b504 09383f1 402b504 7173af9 f8cafb8 9b2289b 402b504 f8cafb8 402b504 f8cafb8 09383f1 f8cafb8 0a3d586 f8cafb8 402b504 f8cafb8 9b2289b f8cafb8 80a80fa f8cafb8 402b504 f8cafb8 402b504 80a80fa f8cafb8 09383f1 f8cafb8 09383f1 402b504 09383f1 402b504 f8cafb8 402b504 09383f1 402b504 80a80fa f8cafb8 0a3d586 f8cafb8 88e96c2 0a3d586 f8cafb8 402b504 88e96c2 0a3d586 80a80fa 88e96c2 402b504 f8cafb8 402b504 80a80fa f8cafb8 9b2289b f8cafb8 402b504 f8cafb8 9b2289b f8cafb8 402b504 80a80fa f8cafb8 80a80fa f8cafb8 88e96c2 f8cafb8 402b504 80a80fa f8cafb8 0a3d586 1d213d9 f8cafb8 88e96c2 0a3d586 80a80fa 88e96c2 0a3d586 88e96c2 0a3d586 80a80fa 0a3d586 80a80fa 88e96c2 0a3d586 f8cafb8 80a80fa 88e96c2 f8cafb8 88e96c2 f8cafb8 88e96c2 f8cafb8 80a80fa 1d213d9 f8cafb8 80a80fa f8cafb8 0a3d586 f8cafb8 80a80fa 1d213d9 80a80fa 1d213d9 0a3d586 88e96c2 80a80fa f8cafb8 1d213d9 88e96c2 1d213d9 f8cafb8 1d213d9 80a80fa 0a3d586 1d213d9 88e96c2 1d213d9 0a3d586 88e96c2 1d213d9 f8cafb8 0a3d586 1d213d9 f8cafb8 0a3d586 1d213d9 80a80fa 0a3d586 80a80fa 0a3d586 1d213d9 0a3d586 1d213d9 88e96c2 1d213d9 0a3d586 80a80fa 0a3d586 1d213d9 0a3d586 1d213d9 88e96c2 1d213d9 f8cafb8 0a3d586 1d213d9 f8cafb8 0a3d586 b2cb163 0a3d586 1d213d9 f8cafb8 b2cb163 f8cafb8 80a80fa 88e96c2 f8cafb8 80a80fa 88e96c2 f8cafb8 0a3d586 f8cafb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
import numpy as np
from hivision import IDCreator
from hivision.error import FaceError, APIError
from hivision.utils import (
add_background,
add_background_with_image,
resize_image_to_kb,
add_watermark,
save_image_dpi_to_bytes,
)
from hivision.creator.layout_calculator import (
generate_layout_photo,
generate_layout_image,
)
from hivision.creator.choose_handler import choose_handler
from hivision.plugin.template.template_calculator import generte_template_photo
from demo.utils import range_check
import gradio as gr
import os
import cv2
import time
from demo.locales import LOCALES
base_path = os.path.dirname(os.path.abspath(__file__))
class IDPhotoProcessor:
def process(
self,
input_image,
mode_option,
size_list_option,
color_option,
render_option,
image_kb_options,
custom_color_R,
custom_color_G,
custom_color_B,
custom_color_hex_value,
custom_size_height,
custom_size_width,
custom_size_height_mm,
custom_size_width_mm,
custom_image_kb,
language,
matting_model_option,
watermark_option,
watermark_text,
watermark_text_color,
watermark_text_size,
watermark_text_opacity,
watermark_text_angle,
watermark_text_space,
face_detect_option,
head_measure_ratio=0.2,
top_distance_max=0.12,
whitening_strength=0,
image_dpi_option=False,
custom_image_dpi=None,
brightness_strength=0,
contrast_strength=0,
sharpen_strength=0,
saturation_strength=0,
face_alignment_option=False,
):
# 初始化参数
top_distance_min = top_distance_max - 0.02
# 得到render_option在LOCALES["render_mode"][language]["choices"]中的索引
render_option_index = LOCALES["render_mode"][language]["choices"].index(
render_option
)
idphoto_json = self._initialize_idphoto_json(
mode_option, color_option, render_option_index, image_kb_options
)
# 处理尺寸模式
size_result = self._process_size_mode(
idphoto_json,
language,
size_list_option,
custom_size_height,
custom_size_width,
custom_size_height_mm,
custom_size_width_mm,
)
if isinstance(size_result, list):
return size_result # 返回错误信息
# 处理颜色模式
self._process_color_mode(
idphoto_json,
language,
color_option,
custom_color_R,
custom_color_G,
custom_color_B,
custom_color_hex_value,
)
# 如果设置了自定义KB大小
if (
idphoto_json["image_kb_mode"]
== LOCALES["image_kb"][language]["choices"][-1]
):
idphoto_json["custom_image_kb"] = custom_image_kb
# 如果设置了自定义DPI大小
if image_dpi_option == LOCALES["image_dpi"][language]["choices"][-1]:
idphoto_json["custom_image_dpi"] = custom_image_dpi
# 创建IDCreator实例并设置处理器
creator = IDCreator()
choose_handler(creator, matting_model_option, face_detect_option)
# 生成证件照
try:
result = self._generate_id_photo(
creator,
input_image,
idphoto_json,
language,
head_measure_ratio,
top_distance_max,
top_distance_min,
whitening_strength,
brightness_strength,
contrast_strength,
sharpen_strength,
saturation_strength,
face_alignment_option,
)
except (FaceError, APIError):
return self._handle_photo_generation_error(language)
# 后处理生成的照片
return self._process_generated_photo(
result,
idphoto_json,
language,
watermark_option,
watermark_text,
watermark_text_size,
watermark_text_opacity,
watermark_text_angle,
watermark_text_space,
watermark_text_color,
)
# 初始化idphoto_json字典
def _initialize_idphoto_json(
self,
mode_option,
color_option,
render_option,
image_kb_options,
):
"""初始化idphoto_json字典"""
return {
"size_mode": mode_option,
"color_mode": color_option,
"render_mode": render_option,
"image_kb_mode": image_kb_options,
"custom_image_kb": None,
"custom_image_dpi": None,
}
# 处理尺寸模式
def _process_size_mode(
self,
idphoto_json,
language,
size_list_option,
custom_size_height,
custom_size_width,
custom_size_height_mm,
custom_size_width_mm,
):
"""处理尺寸模式"""
# 如果选择了尺寸列表
if idphoto_json["size_mode"] == LOCALES["size_mode"][language]["choices"][0]:
idphoto_json["size"] = LOCALES["size_list"][language]["develop"][
size_list_option
]
# 如果选择了自定义尺寸(px或mm)
elif (
idphoto_json["size_mode"] == LOCALES["size_mode"][language]["choices"][2]
or idphoto_json["size_mode"] == LOCALES["size_mode"][language]["choices"][3]
):
# 如果选择了自定义尺寸(px)
if (
idphoto_json["size_mode"]
== LOCALES["size_mode"][language]["choices"][2]
):
id_height, id_width = int(custom_size_height), int(custom_size_width)
# 如果选择了自定义尺寸(mm)
else:
# 将mm转换为px
id_height = int(custom_size_height_mm / 25.4 * 300)
id_width = int(custom_size_width_mm / 25.4 * 300)
# 检查尺寸像素是否在100到1800之间
if (
id_height < id_width
or min(id_height, id_width) < 100
or max(id_height, id_width) > 1800
):
return self._create_error_response(language)
idphoto_json["size"] = (id_height, id_width)
# 如果选择了只换底
else:
idphoto_json["size"] = (None, None)
# 处理颜色模式
def _process_color_mode(
self,
idphoto_json,
language,
color_option,
custom_color_R,
custom_color_G,
custom_color_B,
custom_color_hex_value,
):
"""处理颜色模式"""
# 如果选择了自定义颜色BGR
if idphoto_json["color_mode"] == LOCALES["bg_color"][language]["choices"][-2]:
idphoto_json["color_bgr"] = tuple(
map(range_check, [custom_color_R, custom_color_G, custom_color_B])
)
# 如果选择了自定义颜色HEX
elif idphoto_json["color_mode"] == LOCALES["bg_color"][language]["choices"][-1]:
hex_color = custom_color_hex_value
# 将十六进制颜色转换为RGB颜色,如果长度为6,则直接转换,如果长度为7,则去掉#号再转换
if len(hex_color) == 6:
idphoto_json["color_bgr"] = tuple(
int(hex_color[i : i + 2], 16) for i in (0, 2, 4)
)
elif len(hex_color) == 7:
hex_color = hex_color[1:]
idphoto_json["color_bgr"] = tuple(
int(hex_color[i : i + 2], 16) for i in (0, 2, 4)
)
else:
raise ValueError(
"Invalid hex color. You can only use 6 or 7 characters. For example: #FFFFFF or FFFFFF"
)
# 如果选择了美式证件照
elif idphoto_json["color_mode"] == LOCALES["bg_color"][language]["choices"][-3]:
idphoto_json["color_bgr"] = (255, 255, 255)
else:
hex_color = LOCALES["bg_color"][language]["develop"][color_option]
idphoto_json["color_bgr"] = tuple(
int(hex_color[i : i + 2], 16) for i in (0, 2, 4)
)
# 生成证件照
def _generate_id_photo(
self,
creator: IDCreator,
input_image,
idphoto_json,
language,
head_measure_ratio,
top_distance_max,
top_distance_min,
whitening_strength,
brightness_strength,
contrast_strength,
sharpen_strength,
saturation_strength,
face_alignment_option,
):
"""生成证件照"""
change_bg_only = (
idphoto_json["size_mode"] in LOCALES["size_mode"][language]["choices"][1]
)
return creator(
input_image,
change_bg_only=change_bg_only,
size=idphoto_json["size"],
head_measure_ratio=head_measure_ratio,
head_top_range=(top_distance_max, top_distance_min),
whitening_strength=whitening_strength,
brightness_strength=brightness_strength,
contrast_strength=contrast_strength,
sharpen_strength=sharpen_strength,
saturation_strength=saturation_strength,
face_alignment=face_alignment_option,
)
# 处理照片生成错误
def _handle_photo_generation_error(self, language):
"""处理照片生成错误"""
return [gr.update(value=None) for _ in range(4)] + [
gr.update(visible=False),
gr.update(
value=LOCALES["notification"][language]["face_error"], visible=True
),
None,
]
# 处理生成的照片
def _process_generated_photo(
self,
result,
idphoto_json,
language,
watermark_option,
watermark_text,
watermark_text_size,
watermark_text_opacity,
watermark_text_angle,
watermark_text_space,
watermark_text_color,
):
"""处理生成的照片"""
result_image_standard, result_image_hd, _, _, _, _ = result
result_image_standard_png = np.uint8(result_image_standard)
result_image_hd_png = np.uint8(result_image_hd)
# 渲染背景
result_image_standard, result_image_hd = self._render_background(
result_image_standard, result_image_hd, idphoto_json, language
)
# 添加水印
if watermark_option == LOCALES["watermark_switch"][language]["choices"][1]:
result_image_standard, result_image_hd = self._add_watermark(
result_image_standard,
result_image_hd,
watermark_text,
watermark_text_size,
watermark_text_opacity,
watermark_text_angle,
watermark_text_space,
watermark_text_color,
)
# 生成排版照片
result_image_layout, result_image_layout_visible = self._generate_image_layout(
idphoto_json,
result_image_standard,
language,
)
# 生成模板照片
result_image_template, result_image_template_visible = self._generate_image_template(
idphoto_json,
result_image_hd,
language,
)
# 调整图片大小
output_image_path_dict = self._resize_image_if_needed(
result_image_standard,
result_image_hd,
result_image_layout,
idphoto_json,
)
# 如果output_image_path_dict为None,即没有设置KB和DPI
if output_image_path_dict is None:
return self._create_response(
result_image_standard,
result_image_hd,
result_image_standard_png,
result_image_hd_png,
gr.update(value=result_image_layout, visible=result_image_layout_visible),
gr.update(value=result_image_template, visible=result_image_template_visible),
gr.update(visible = result_image_template_visible),
)
# 如果output_image_path_dict不为None,即设置了KB和DPI
else:
if output_image_path_dict["layout"]["processed"]:
result_image_layout = output_image_path_dict["layout"]["path"]
return self._create_response(
(
output_image_path_dict["standard"]["path"]
if output_image_path_dict["standard"]["processed"]
else result_image_standard
),
(
output_image_path_dict["hd"]["path"]
if output_image_path_dict["hd"]["processed"]
else result_image_hd
),
result_image_standard_png,
result_image_hd_png,
gr.update(value=result_image_layout, visible=result_image_layout_visible),
gr.update(value=result_image_template, visible=result_image_template_visible),
gr.update(visible = result_image_template_visible),
)
# 渲染背景
def _render_background(self, result_image_standard, result_image_hd, idphoto_json, language):
"""渲染背景"""
render_modes = {0: "pure_color", 1: "updown_gradient", 2: "center_gradient"}
render_mode = render_modes[idphoto_json["render_mode"]]
if idphoto_json["color_mode"] != LOCALES["bg_color"][language]["choices"][-3]:
result_image_standard = np.uint8(
add_background(
result_image_standard, bgr=idphoto_json["color_bgr"], mode=render_mode
)
)
result_image_hd = np.uint8(
add_background(
result_image_hd, bgr=idphoto_json["color_bgr"], mode=render_mode
)
)
# 如果选择了美式证件照
else:
result_image_standard = np.uint8(
add_background_with_image(
result_image_standard,
background_image=cv2.imread(os.path.join(base_path, "assets", "american-style.png"))
)
)
result_image_hd = np.uint8(
add_background_with_image(
result_image_hd,
background_image=cv2.imread(os.path.join(base_path, "assets", "american-style.png"))
)
)
return result_image_standard, result_image_hd
# 生成排版照片
def _generate_image_layout(
self,
idphoto_json,
result_image_standard,
language,
):
"""生成排版照片"""
# 如果选择了只换底,则不生成排版照片
if idphoto_json["size_mode"] in LOCALES["size_mode"][language]["choices"][1]:
return None, False
typography_arr, typography_rotate = generate_layout_photo(
input_height=idphoto_json["size"][0],
input_width=idphoto_json["size"][1],
)
result_image_layout = generate_layout_image(
result_image_standard,
typography_arr,
typography_rotate,
height=idphoto_json["size"][0],
width=idphoto_json["size"][1],
)
return result_image_layout, True
# 生成模板照片
def _generate_image_template(
self,
idphoto_json,
result_image_hd,
language,
):
# 如果选择了只换底,则不生成模板照片
if idphoto_json["size_mode"] in LOCALES["size_mode"][language]["choices"][1]:
return None, False
TEMPLATE_NAME_LIST = ["template_1", "template_2"]
"""生成模板照片"""
result_image_template_list = []
for template_name in TEMPLATE_NAME_LIST:
result_image_template = generte_template_photo(
template_name=template_name,
input_image=result_image_hd,
)
result_image_template_list.append(result_image_template)
return result_image_template_list, True
# 添加水印
def _add_watermark(
self,
result_image_standard,
result_image_hd,
watermark_text,
watermark_text_size,
watermark_text_opacity,
watermark_text_angle,
watermark_text_space,
watermark_text_color,
):
"""添加水印"""
watermark_params = {
"text": watermark_text,
"size": watermark_text_size,
"opacity": watermark_text_opacity,
"angle": watermark_text_angle,
"space": watermark_text_space,
"color": watermark_text_color,
}
result_image_standard = add_watermark(
image=result_image_standard, **watermark_params
)
result_image_hd = add_watermark(image=result_image_hd, **watermark_params)
return result_image_standard, result_image_hd
def _resize_image_if_needed(
self,
result_image_standard,
result_image_hd,
result_image_layout,
idphoto_json,
format="png",
):
"""如果需要,调整图片大小"""
# 设置输出路径
base_path = os.path.join(
os.path.dirname(os.path.dirname(__file__)), "demo/kb_output"
)
timestamp = int(time.time())
output_paths = {
"standard": {
"path": f"{base_path}/{timestamp}_standard",
"processed": False,
},
"hd": {"path": f"{base_path}/{timestamp}_hd", "processed": False},
"layout": {"path": f"{base_path}/{timestamp}_layout", "processed": False},
}
# 获取自定义的KB和DPI值
custom_kb = idphoto_json.get("custom_image_kb")
custom_dpi = idphoto_json.get("custom_image_dpi", 300)
# 处理同时有自定义KB和DPI的情况
if custom_kb and custom_dpi:
# 为所有输出路径添加DPI信息
for key in output_paths:
output_paths[key]["path"] += f"_{custom_dpi}dpi.{format}"
# 为标准图像添加KB信息
output_paths["standard"]["path"] = output_paths["standard"]["path"].replace(
f".{format}", f"_{custom_kb}kb.{format}"
)
# 调整标准图像大小并保存
resize_image_to_kb(
result_image_standard,
output_paths["standard"]["path"],
custom_kb,
dpi=custom_dpi,
)
output_paths["standard"]["processed"] = True
# 保存高清图像和排版图像
save_image_dpi_to_bytes(
result_image_hd, output_paths["hd"]["path"], dpi=custom_dpi
)
output_paths["hd"]["processed"] = True
if result_image_layout is not None:
save_image_dpi_to_bytes(
result_image_layout, output_paths["layout"]["path"], dpi=custom_dpi
)
output_paths["layout"]["processed"] = True
return output_paths
# 只有自定义DPI的情况
elif custom_dpi:
for key in output_paths:
output_paths[key]["path"] += f"_{custom_dpi}dpi.{format}"
# 保存所有图像,使用自定义DPI
if key == "layout" and result_image_layout is None:
pass
else:
save_image_dpi_to_bytes(
locals()[f"result_image_{key}"],
output_paths[key]["path"],
dpi=custom_dpi,
)
output_paths[key]["processed"] = True
return output_paths
# 只有自定义KB的情况
elif custom_kb:
output_paths["standard"]["path"] += f"_{custom_kb}kb.{format}"
# 只调整标准图像大小并保存
resize_image_to_kb(
result_image_standard,
output_paths["standard"]["path"],
custom_kb,
dpi=300,
)
output_paths["standard"]["processed"] = True
return output_paths
# 如果没有自定义设置,返回None
return None
def _create_response(
self,
result_image_standard,
result_image_hd,
result_image_standard_png,
result_image_hd_png,
result_layout_image_gr,
result_image_template_gr,
result_image_template_accordion_gr,
):
"""创建响应"""
response = [
result_image_standard,
result_image_hd,
result_image_standard_png,
result_image_hd_png,
result_layout_image_gr,
result_image_template_gr,
result_image_template_accordion_gr,
gr.update(visible=False),
]
return response
def _create_error_response(self, language):
"""创建错误响应"""
return [gr.update(value=None) for _ in range(4)] + [
None,
gr.update(
value=LOCALES["size_mode"][language]["custom_size_eror"], visible=True
),
None,
]
|