File size: 4,164 Bytes
ca46a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4be6b70
 
 
 
 
 
 
 
 
 
 
ca46a75
 
 
 
 
 
 
 
4be6b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca46a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4be6b70
ca46a75
 
 
4be6b70
 
 
ca46a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python
# -*- coding: utf-8 -*-
r"""
@DATE: 2024/9/5 21:21
@File: human_matting.py
@IDE: pycharm
@Description:
    人像抠图
"""
import numpy as np
from PIL import Image
import onnxruntime
from .tensor2numpy import NNormalize, NTo_Tensor, NUnsqueeze
from .context import Context
import cv2
import os


WEIGHTS = {
    "hivision_modnet": os.path.join(
        os.path.dirname(__file__), "weights", "hivision_modnet.onnx"
    ),
    "modnet_photographic_portrait_matting": os.path.join(
        os.path.dirname(__file__),
        "weights",
        "modnet_photographic_portrait_matting.onnx",
    ),
}


def extract_human(ctx: Context):
    """
    人像抠图
    :param ctx: 上下文
    """
    # 抠图
    matting_image = get_modnet_matting(ctx.processing_image, WEIGHTS["hivision_modnet"])
    # 修复抠图
    ctx.processing_image = hollow_out_fix(matting_image)
    ctx.matting_image = ctx.processing_image.copy()


def extract_human_modnet_photographic_portrait_matting(ctx: Context):
    """
    人像抠图
    :param ctx: 上下文
    """
    # 抠图
    matting_image = get_modnet_matting(
        ctx.processing_image, WEIGHTS["modnet_photographic_portrait_matting"]
    )
    # 修复抠图
    ctx.processing_image = hollow_out_fix(matting_image)
    ctx.matting_image = ctx.processing_image.copy()


def hollow_out_fix(src: np.ndarray) -> np.ndarray:
    """
    修补抠图区域,作为抠图模型精度不够的补充
    :param src:
    :return:
    """
    b, g, r, a = cv2.split(src)
    src_bgr = cv2.merge((b, g, r))
    # -----------padding---------- #
    add_area = np.zeros((10, a.shape[1]), np.uint8)
    a = np.vstack((add_area, a, add_area))
    add_area = np.zeros((a.shape[0], 10), np.uint8)
    a = np.hstack((add_area, a, add_area))
    # -------------end------------ #
    _, a_threshold = cv2.threshold(a, 127, 255, 0)
    a_erode = cv2.erode(
        a_threshold,
        kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)),
        iterations=3,
    )
    contours, hierarchy = cv2.findContours(
        a_erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
    )
    contours = [x for x in contours]
    # contours = np.squeeze(contours)
    contours.sort(key=lambda c: cv2.contourArea(c), reverse=True)
    a_contour = cv2.drawContours(np.zeros(a.shape, np.uint8), contours[0], -1, 255, 2)
    # a_base = a_contour[1:-1, 1:-1]
    h, w = a.shape[:2]
    mask = np.zeros(
        [h + 2, w + 2], np.uint8
    )  # mask 必须行和列都加 2,且必须为 uint8 单通道阵列
    cv2.floodFill(a_contour, mask=mask, seedPoint=(0, 0), newVal=255)
    a = cv2.add(a, 255 - a_contour)
    return cv2.merge((src_bgr, a[10:-10, 10:-10]))


def image2bgr(input_image):
    if len(input_image.shape) == 2:
        input_image = input_image[:, :, None]
    if input_image.shape[2] == 1:
        result_image = np.repeat(input_image, 3, axis=2)
    elif input_image.shape[2] == 4:
        result_image = input_image[:, :, 0:3]
    else:
        result_image = input_image

    return result_image


def read_modnet_image(input_image, ref_size=512):
    im = Image.fromarray(np.uint8(input_image))
    width, length = im.size[0], im.size[1]
    im = np.asarray(im)
    im = image2bgr(im)
    im = cv2.resize(im, (ref_size, ref_size), interpolation=cv2.INTER_AREA)
    im = NNormalize(im, mean=np.array([0.5, 0.5, 0.5]), std=np.array([0.5, 0.5, 0.5]))
    im = NUnsqueeze(NTo_Tensor(im))

    return im, width, length


# sess = None


def get_modnet_matting(input_image, checkpoint_path, ref_size=512):
    # global sess
    # if sess is None:
    sess = onnxruntime.InferenceSession(checkpoint_path)

    input_name = sess.get_inputs()[0].name
    output_name = sess.get_outputs()[0].name

    im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size)

    matte = sess.run([output_name], {input_name: im})
    matte = (matte[0] * 255).astype("uint8")
    matte = np.squeeze(matte)
    mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
    b, g, r = cv2.split(np.uint8(input_image))

    output_image = cv2.merge((b, g, r, mask))

    return output_image