Spaces:
Running
Running
File size: 12,396 Bytes
ca46a75 7173af9 ca46a75 434720c f8cafb8 434720c f8cafb8 434720c ca46a75 f8cafb8 ca46a75 434720c ca46a75 23cd1cf ca46a75 23cd1cf ca46a75 23cd1cf ca46a75 23cd1cf ca46a75 23cd1cf ca46a75 23cd1cf ca46a75 23cd1cf f8cafb8 23cd1cf ca46a75 7173af9 ca46a75 f8cafb8 ca46a75 7173af9 434720c 7173af9 434720c 7173af9 ca46a75 f8cafb8 ca46a75 7173af9 88e96c2 7173af9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from PIL import Image
import io
import numpy as np
import cv2
import base64
from hivision.plugin.watermark import Watermarker, WatermarkerStyles
def save_image_dpi_to_bytes(image: np.ndarray, output_image_path: str = None, dpi: int = 300):
"""
设置图像的DPI(每英寸点数)并返回字节流
:param image: numpy.ndarray, 输入的图像数组
:param output_image_path: Path to save the resized image. 保存调整大小后的图像的路径。
:param dpi: int, 要设置的DPI值,默认为300
"""
image = Image.fromarray(image)
# 创建一个字节流对象
byte_stream = io.BytesIO()
# 将图像保存到字节流
image.save(byte_stream, format="PNG", dpi=(dpi, dpi))
# 获取字节流的内容
image_bytes = byte_stream.getvalue()
# Save the image to the output path
if output_image_path:
with open(output_image_path, "wb") as f:
f.write(image_bytes)
return image_bytes
def resize_image_to_kb(input_image: np.ndarray, output_image_path: str = None, target_size_kb: int = 100, dpi: int = 300):
"""
Resize an image to a target size in KB.
将图像调整大小至目标文件大小(KB)。
:param input_image_path: Path to the input image. 输入图像的路径。
:param output_image_path: Path to save the resized image. 保存调整大小后的图像的路径。
:param target_size_kb: Target size in KB. 目标文件大小(KB)。
Example:
resize_image_to_kb('input_image.jpg', 'output_image.jpg', 50)
"""
if isinstance(input_image, np.ndarray):
img = Image.fromarray(input_image)
elif isinstance(input_image, Image.Image):
img = input_image
else:
raise ValueError("input_image must be a NumPy array or PIL Image.")
# Convert image to RGB mode if it's not
if img.mode != "RGB":
img = img.convert("RGB")
# Initial quality value
quality = 95
while True:
# Create a BytesIO object to hold the image data in memory
img_byte_arr = io.BytesIO()
# Save the image to the BytesIO object with the current quality
img.save(img_byte_arr, format="JPEG", quality=quality, dpi=(dpi, dpi))
# Get the size of the image in KB
img_size_kb = len(img_byte_arr.getvalue()) / 1024
# Check if the image size is within the target size
if img_size_kb <= target_size_kb or quality == 1:
# If the image is smaller than the target size, add padding
if img_size_kb < target_size_kb:
padding_size = int(
(target_size_kb * 1024) - len(img_byte_arr.getvalue())
)
padding = b"\x00" * padding_size
img_byte_arr.write(padding)
# Save the image to the output path
if output_image_path:
with open(output_image_path, "wb") as f:
f.write(img_byte_arr.getvalue())
return img_byte_arr.getvalue()
# Reduce the quality if the image is still too large
quality -= 5
# Ensure quality does not go below 1
if quality < 1:
quality = 1
def resize_image_to_kb_base64(input_image, target_size_kb, mode="exact"):
"""
Resize an image to a target size in KB and return it as a base64 encoded string.
将图像调整大小至目标文件大小(KB)并返回base64编码的字符串。
:param input_image: Input image as a NumPy array or PIL Image. 输入图像,可以是NumPy数组或PIL图像。
:param target_size_kb: Target size in KB. 目标文件大小(KB)。
:param mode: Mode of resizing ('exact', 'max', 'min'). 模式:'exact'(精确大小)、'max'(不大于)、'min'(不小于)。
:return: Base64 encoded string of the resized image. 调整大小后的图像的base64编码字符串。
"""
if isinstance(input_image, np.ndarray):
img = Image.fromarray(input_image)
elif isinstance(input_image, Image.Image):
img = input_image
else:
raise ValueError("input_image must be a NumPy array or PIL Image.")
# Convert image to RGB mode if it's not
if img.mode != "RGB":
img = img.convert("RGB")
# Initial quality value
quality = 95
while True:
# Create a BytesIO object to hold the image data in memory
img_byte_arr = io.BytesIO()
# Save the image to the BytesIO object with the current quality
img.save(img_byte_arr, format="JPEG", quality=quality)
# Get the size of the image in KB
img_size_kb = len(img_byte_arr.getvalue()) / 1024
# Check based on the mode
if mode == "exact":
# If the image size is equal to the target size, we can return it
if img_size_kb == target_size_kb:
break
# If the image is smaller than the target size, add padding
elif img_size_kb < target_size_kb:
padding_size = int(
(target_size_kb * 1024) - len(img_byte_arr.getvalue())
)
padding = b"\x00" * padding_size
img_byte_arr.write(padding)
break
elif mode == "max":
# If the image size is within the target size, we can return it
if img_size_kb <= target_size_kb or quality == 1:
break
elif mode == "min":
# If the image size is greater than or equal to the target size, we can return it
if img_size_kb >= target_size_kb:
break
# Reduce the quality if the image is still too large
quality -= 5
# Ensure quality does not go below 1
if quality < 1:
quality = 1
# Encode the image data to base64
img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
return "data:image/png;base64," + img_base64
def numpy_2_base64(img: np.ndarray) -> str:
_, buffer = cv2.imencode(".png", img)
base64_image = base64.b64encode(buffer).decode("utf-8")
return "data:image/png;base64," + base64_image
def base64_2_numpy(base64_image: str) -> np.ndarray:
# Remove the data URL prefix if present
if base64_image.startswith('data:image'):
base64_image = base64_image.split(',')[1]
# Decode base64 string to bytes
img_bytes = base64.b64decode(base64_image)
# Convert bytes to numpy array
img_array = np.frombuffer(img_bytes, dtype=np.uint8)
# Decode the image array
img = cv2.imdecode(img_array, cv2.IMREAD_UNCHANGED)
return img
# 字节流转base64
def bytes_2_base64(img_byte_arr: bytes) -> str:
base64_image = base64.b64encode(img_byte_arr).decode("utf-8")
return "data:image/png;base64," + base64_image
def save_numpy_image(numpy_img, file_path):
# 检查数组的形状
if numpy_img.shape[2] == 4:
# 将 BGR 转换为 RGB,并保留透明通道
rgb_img = np.concatenate(
(np.flip(numpy_img[:, :, :3], axis=-1), numpy_img[:, :, 3:]), axis=-1
).astype(np.uint8)
img = Image.fromarray(rgb_img, mode="RGBA")
else:
# 将 BGR 转换为 RGB
rgb_img = np.flip(numpy_img, axis=-1).astype(np.uint8)
img = Image.fromarray(rgb_img, mode="RGB")
img.save(file_path)
def numpy_to_bytes(numpy_img):
img = Image.fromarray(numpy_img)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return img_byte_arr
def hex_to_rgb(value):
value = value.lstrip("#")
length = len(value)
return tuple(
int(value[i : i + length // 3], 16) for i in range(0, length, length // 3)
)
def generate_gradient(start_color, width, height, mode="updown"):
# 定义背景颜色
end_color = (255, 255, 255) # 白色
# 创建一个空白图像
r_out = np.zeros((height, width), dtype=int)
g_out = np.zeros((height, width), dtype=int)
b_out = np.zeros((height, width), dtype=int)
if mode == "updown":
# 生成上下渐变色
for y in range(height):
r = int(
(y / height) * end_color[0] + ((height - y) / height) * start_color[0]
)
g = int(
(y / height) * end_color[1] + ((height - y) / height) * start_color[1]
)
b = int(
(y / height) * end_color[2] + ((height - y) / height) * start_color[2]
)
r_out[y, :] = r
g_out[y, :] = g
b_out[y, :] = b
else:
# 生成中心渐变色
img = np.zeros((height, width, 3))
# 定义椭圆中心和半径
center = (width // 2, height // 2)
end_axies = max(height, width)
# 定义渐变色
end_color = (255, 255, 255)
# 绘制椭圆
for y in range(end_axies):
axes = (end_axies - y, end_axies - y)
r = int(
(y / end_axies) * end_color[0]
+ ((end_axies - y) / end_axies) * start_color[0]
)
g = int(
(y / end_axies) * end_color[1]
+ ((end_axies - y) / end_axies) * start_color[1]
)
b = int(
(y / end_axies) * end_color[2]
+ ((end_axies - y) / end_axies) * start_color[2]
)
cv2.ellipse(img, center, axes, 0, 0, 360, (b, g, r), -1)
b_out, g_out, r_out = cv2.split(np.uint64(img))
return r_out, g_out, b_out
def add_background(input_image, bgr=(0, 0, 0), mode="pure_color"):
"""
本函数的功能为为透明图像加上背景。
:param input_image: numpy.array(4 channels), 透明图像
:param bgr: tuple, 合成纯色底时的 BGR 值
:param new_background: numpy.array(3 channels),合成自定义图像底时的背景图
:return: output: 合成好的输出图像
"""
height, width = input_image.shape[0], input_image.shape[1]
try:
b, g, r, a = cv2.split(input_image)
except ValueError:
raise ValueError(
"The input image must have 4 channels. 输入图像必须有4个通道,即透明图像。"
)
a_cal = a / 255
if mode == "pure_color":
# 纯色填充
b2 = np.full([height, width], bgr[0], dtype=int)
g2 = np.full([height, width], bgr[1], dtype=int)
r2 = np.full([height, width], bgr[2], dtype=int)
elif mode == "updown_gradient":
b2, g2, r2 = generate_gradient(bgr, width, height, mode="updown")
else:
b2, g2, r2 = generate_gradient(bgr, width, height, mode="center")
output = cv2.merge(
((b - b2) * a_cal + b2, (g - g2) * a_cal + g2, (r - r2) * a_cal + r2)
)
return output
def add_background_with_image(input_image: np.ndarray, background_image: np.ndarray) -> np.ndarray:
"""
本函数的功能为为透明图像加上背景。
:param input_image: numpy.array(4 channels), 透明图像
:param background_image: numpy.array(3 channels), 背景图像
:return: output: 合成好的输出图像
"""
height, width = input_image.shape[:2]
try:
b, g, r, a = cv2.split(input_image)
except ValueError:
raise ValueError(
"The input image must have 4 channels. 输入图像必须有4个通道,即透明图像。"
)
# 确保背景图像与输入图像大小一致
background_image = cv2.resize(background_image, (width, height), cv2.INTER_AREA)
background_image = cv2.cvtColor(background_image, cv2.COLOR_BGR2RGB)
b2, g2, r2 = cv2.split(background_image)
a_cal = a / 255.0
# 修正混合公式
output = cv2.merge(
(b * a_cal + b2 * (1 - a_cal),
g * a_cal + g2 * (1 - a_cal),
r * a_cal + r2 * (1 - a_cal))
)
return output.astype(np.uint8)
def add_watermark(
image, text, size=50, opacity=0.5, angle=45, color="#8B8B1B", space=75
):
image = Image.fromarray(image)
watermarker = Watermarker(
input_image=image,
text=text,
style=WatermarkerStyles.STRIPED,
angle=angle,
color=color,
opacity=opacity,
size=size,
space=space,
)
return np.array(watermarker.image.convert("RGB"))
|