HivisionIDPhotos / hivision /creator /human_matting.py
TheEeeeLin's picture
update app.py
1d213d9
raw
history blame
13.8 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
r"""
@DATE: 2024/9/5 21:21
@File: human_matting.py
@IDE: pycharm
@Description:
人像抠图
"""
import numpy as np
from PIL import Image
import onnxruntime
from .tensor2numpy import NNormalize, NTo_Tensor, NUnsqueeze
from .context import Context
import cv2
import os
from time import time
WEIGHTS = {
"hivision_modnet": os.path.join(
os.path.dirname(__file__), "weights", "hivision_modnet.onnx"
),
"modnet_photographic_portrait_matting": os.path.join(
os.path.dirname(__file__),
"weights",
"modnet_photographic_portrait_matting.onnx",
),
"mnn_hivision_modnet": os.path.join(
os.path.dirname(__file__),
"weights",
"mnn_hivision_modnet.mnn",
),
"rmbg-1.4": os.path.join(os.path.dirname(__file__), "weights", "rmbg-1.4.onnx"),
"birefnet-v1-lite": os.path.join(
os.path.dirname(__file__), "weights", "birefnet-v1-lite.onnx"
),
}
ONNX_DEVICE = onnxruntime.get_device()
ONNX_PROVIDER = (
"CUDAExecutionProvider" if ONNX_DEVICE == "GPU" else "CPUExecutionProvider"
)
HIVISION_MODNET_SESS = None
MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS = None
RMBG_SESS = None
BIREFNET_V1_LITE_SESS = None
def load_onnx_model(checkpoint_path, set_cpu=False):
providers = (
["CUDAExecutionProvider", "CPUExecutionProvider"]
if ONNX_PROVIDER == "CUDAExecutionProvider"
else ["CPUExecutionProvider"]
)
if set_cpu:
sess = onnxruntime.InferenceSession(
checkpoint_path, providers=["CPUExecutionProvider"]
)
else:
try:
sess = onnxruntime.InferenceSession(checkpoint_path, providers=providers)
except Exception as e:
if ONNX_DEVICE == "CUDAExecutionProvider":
print(f"Failed to load model with CUDAExecutionProvider: {e}")
print("Falling back to CPUExecutionProvider")
# 尝试使用CPU加载模型
sess = onnxruntime.InferenceSession(
checkpoint_path, providers=["CPUExecutionProvider"]
)
else:
raise e # 如果是CPU执行失败,重新抛出异常
return sess
def extract_human(ctx: Context):
"""
人像抠图
:param ctx: 上下文
"""
# 抠图
matting_image = get_modnet_matting(ctx.processing_image, WEIGHTS["hivision_modnet"])
# 修复抠图
ctx.processing_image = hollow_out_fix(matting_image)
ctx.matting_image = ctx.processing_image.copy()
def extract_human_modnet_photographic_portrait_matting(ctx: Context):
"""
人像抠图
:param ctx: 上下文
"""
# 抠图
matting_image = get_modnet_matting_photographic_portrait_matting(
ctx.processing_image, WEIGHTS["modnet_photographic_portrait_matting"]
)
# 修复抠图
ctx.processing_image = matting_image
ctx.matting_image = ctx.processing_image.copy()
def extract_human_mnn_modnet(ctx: Context):
matting_image = get_mnn_modnet_matting(
ctx.processing_image, WEIGHTS["mnn_hivision_modnet"]
)
ctx.processing_image = hollow_out_fix(matting_image)
ctx.matting_image = ctx.processing_image.copy()
def extract_human_rmbg(ctx: Context):
matting_image = get_rmbg_matting(ctx.processing_image, WEIGHTS["rmbg-1.4"])
ctx.processing_image = matting_image
ctx.matting_image = ctx.processing_image.copy()
# def extract_human_birefnet_portrait(ctx: Context):
# matting_image = get_birefnet_portrait_matting(
# ctx.processing_image, WEIGHTS["birefnet-portrait"]
# )
# ctx.processing_image = matting_image
# ctx.matting_image = ctx.processing_image.copy()
def extract_human_birefnet_lite(ctx: Context):
matting_image = get_birefnet_portrait_matting(
ctx.processing_image, WEIGHTS["birefnet-v1-lite"]
)
ctx.processing_image = matting_image
ctx.matting_image = ctx.processing_image.copy()
def hollow_out_fix(src: np.ndarray) -> np.ndarray:
"""
修补抠图区域,作为抠图模型精度不够的补充
:param src:
:return:
"""
b, g, r, a = cv2.split(src)
src_bgr = cv2.merge((b, g, r))
# -----------padding---------- #
add_area = np.zeros((10, a.shape[1]), np.uint8)
a = np.vstack((add_area, a, add_area))
add_area = np.zeros((a.shape[0], 10), np.uint8)
a = np.hstack((add_area, a, add_area))
# -------------end------------ #
_, a_threshold = cv2.threshold(a, 127, 255, 0)
a_erode = cv2.erode(
a_threshold,
kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)),
iterations=3,
)
contours, hierarchy = cv2.findContours(
a_erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
contours = [x for x in contours]
# contours = np.squeeze(contours)
contours.sort(key=lambda c: cv2.contourArea(c), reverse=True)
a_contour = cv2.drawContours(np.zeros(a.shape, np.uint8), contours[0], -1, 255, 2)
# a_base = a_contour[1:-1, 1:-1]
h, w = a.shape[:2]
mask = np.zeros(
[h + 2, w + 2], np.uint8
) # mask 必须行和列都加 2,且必须为 uint8 单通道阵列
cv2.floodFill(a_contour, mask=mask, seedPoint=(0, 0), newVal=255)
a = cv2.add(a, 255 - a_contour)
return cv2.merge((src_bgr, a[10:-10, 10:-10]))
def image2bgr(input_image):
if len(input_image.shape) == 2:
input_image = input_image[:, :, None]
if input_image.shape[2] == 1:
result_image = np.repeat(input_image, 3, axis=2)
elif input_image.shape[2] == 4:
result_image = input_image[:, :, 0:3]
else:
result_image = input_image
return result_image
def read_modnet_image(input_image, ref_size=512):
im = Image.fromarray(np.uint8(input_image))
width, length = im.size[0], im.size[1]
im = np.asarray(im)
im = image2bgr(im)
im = cv2.resize(im, (ref_size, ref_size), interpolation=cv2.INTER_AREA)
im = NNormalize(im, mean=np.array([0.5, 0.5, 0.5]), std=np.array([0.5, 0.5, 0.5]))
im = NUnsqueeze(NTo_Tensor(im))
return im, width, length
def get_modnet_matting(input_image, checkpoint_path, ref_size=512):
global HIVISION_MODNET_SESS
if not os.path.exists(checkpoint_path):
print(f"Checkpoint file not found: {checkpoint_path}")
return None
if HIVISION_MODNET_SESS is None:
HIVISION_MODNET_SESS = load_onnx_model(checkpoint_path, set_cpu=True)
input_name = HIVISION_MODNET_SESS.get_inputs()[0].name
output_name = HIVISION_MODNET_SESS.get_outputs()[0].name
im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size)
matte = HIVISION_MODNET_SESS.run([output_name], {input_name: im})
matte = (matte[0] * 255).astype("uint8")
matte = np.squeeze(matte)
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
b, g, r = cv2.split(np.uint8(input_image))
output_image = cv2.merge((b, g, r, mask))
return output_image
def get_modnet_matting_photographic_portrait_matting(
input_image, checkpoint_path, ref_size=512
):
global MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS
if not os.path.exists(checkpoint_path):
print(f"Checkpoint file not found: {checkpoint_path}")
return None
if MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS is None:
MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS = load_onnx_model(
checkpoint_path, set_cpu=True
)
input_name = MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS.get_inputs()[0].name
output_name = MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS.get_outputs()[0].name
im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size)
matte = MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS.run(
[output_name], {input_name: im}
)
matte = (matte[0] * 255).astype("uint8")
matte = np.squeeze(matte)
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
b, g, r = cv2.split(np.uint8(input_image))
output_image = cv2.merge((b, g, r, mask))
return output_image
def get_rmbg_matting(input_image: np.ndarray, checkpoint_path, ref_size=1024):
global RMBG_SESS
if not os.path.exists(checkpoint_path):
print(f"Checkpoint file not found: {checkpoint_path}")
return None
def resize_rmbg_image(image):
image = image.convert("RGB")
model_input_size = (ref_size, ref_size)
image = image.resize(model_input_size, Image.BILINEAR)
return image
if RMBG_SESS is None:
RMBG_SESS = load_onnx_model(checkpoint_path, set_cpu=True)
orig_image = Image.fromarray(input_image)
image = resize_rmbg_image(orig_image)
im_np = np.array(image).astype(np.float32)
im_np = im_np.transpose(2, 0, 1) # Change to CxHxW format
im_np = np.expand_dims(im_np, axis=0) # Add batch dimension
im_np = im_np / 255.0 # Normalize to [0, 1]
im_np = (im_np - 0.5) / 0.5 # Normalize to [-1, 1]
# Inference
result = RMBG_SESS.run(None, {RMBG_SESS.get_inputs()[0].name: im_np})[0]
# Post process
result = np.squeeze(result)
ma = np.max(result)
mi = np.min(result)
result = (result - mi) / (ma - mi) # Normalize to [0, 1]
# Convert to PIL image
im_array = (result * 255).astype(np.uint8)
pil_im = Image.fromarray(
im_array, mode="L"
) # Ensure mask is single channel (L mode)
# Resize the mask to match the original image size
pil_im = pil_im.resize(orig_image.size, Image.BILINEAR)
# Paste the mask on the original image
new_im = Image.new("RGBA", orig_image.size, (0, 0, 0, 0))
new_im.paste(orig_image, mask=pil_im)
return np.array(new_im)
def get_mnn_modnet_matting(input_image, checkpoint_path, ref_size=512):
if not os.path.exists(checkpoint_path):
print(f"Checkpoint file not found: {checkpoint_path}")
return None
try:
import MNN.expr as expr
import MNN.nn as nn
except ImportError as e:
raise ImportError(
"The MNN module is not installed or there was an import error. Please ensure that the MNN library is installed by using the command 'pip install mnn'."
) from e
config = {}
config["precision"] = "low" # 当硬件支持(armv8.2)时使用fp16推理
config["backend"] = 0 # CPU
config["numThread"] = 4 # 线程数
im, width, length = read_modnet_image(input_image, ref_size=512)
rt = nn.create_runtime_manager((config,))
net = nn.load_module_from_file(
checkpoint_path, ["input1"], ["output1"], runtime_manager=rt
)
input_var = expr.convert(im, expr.NCHW)
output_var = net.forward(input_var)
matte = expr.convert(output_var, expr.NCHW)
matte = matte.read() # var转换为np
matte = (matte * 255).astype("uint8")
matte = np.squeeze(matte)
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
b, g, r = cv2.split(np.uint8(input_image))
output_image = cv2.merge((b, g, r, mask))
return output_image
def get_birefnet_portrait_matting(input_image, checkpoint_path, ref_size=512):
global BIREFNET_V1_LITE_SESS
if not os.path.exists(checkpoint_path):
print(f"Checkpoint file not found: {checkpoint_path}")
return None
def transform_image(image):
image = image.resize((1024, 1024)) # Resize to 1024x1024
image = (
np.array(image, dtype=np.float32) / 255.0
) # Convert to numpy array and normalize to [0, 1]
image = (image - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225] # Normalize
image = np.transpose(image, (2, 0, 1)) # Change from (H, W, C) to (C, H, W)
image = np.expand_dims(image, axis=0) # Add batch dimension
return image.astype(np.float32) # Ensure the output is float32
orig_image = Image.fromarray(input_image)
input_images = transform_image(
orig_image
) # This will already have the correct shape
# 记录加载onnx模型的开始时间
load_start_time = time()
if BIREFNET_V1_LITE_SESS is None:
print("首次加载birefnet-v1-lite模型...")
if ONNX_DEVICE == "GPU":
print("onnxruntime-gpu已安装,尝试使用CUDA加载模型")
try:
import torch
except ImportError:
print(
"torch未安装,尝试直接使用onnxruntime-gpu加载模型,这需要配置好CUDA和cuDNN"
)
BIREFNET_V1_LITE_SESS = load_onnx_model(checkpoint_path)
else:
BIREFNET_V1_LITE_SESS = load_onnx_model(checkpoint_path, set_cpu=True)
# 记录加载onnx模型的结束时间
load_end_time = time()
# 打印加载onnx模型所花的时间
print(f"Loading ONNX model took {load_end_time - load_start_time:.4f} seconds")
input_name = BIREFNET_V1_LITE_SESS.get_inputs()[0].name
print(onnxruntime.get_device(), BIREFNET_V1_LITE_SESS.get_providers())
time_st = time()
pred_onnx = BIREFNET_V1_LITE_SESS.run(None, {input_name: input_images})[
-1
] # Use float32 input
pred_onnx = np.squeeze(pred_onnx) # Use numpy to squeeze
result = 1 / (1 + np.exp(-pred_onnx)) # Sigmoid function using numpy
print(f"Inference time: {time() - time_st:.4f} seconds")
# Convert to PIL image
im_array = (result * 255).astype(np.uint8)
pil_im = Image.fromarray(
im_array, mode="L"
) # Ensure mask is single channel (L mode)
# Resize the mask to match the original image size
pil_im = pil_im.resize(orig_image.size, Image.BILINEAR)
# Paste the mask on the original image
new_im = Image.new("RGBA", orig_image.size, (0, 0, 0, 0))
new_im.paste(orig_image, mask=pil_im)
return np.array(new_im)