Spaces:
Running
Running
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
r""" | |
@DATE: 2024/9/5 21:21 | |
@File: human_matting.py | |
@IDE: pycharm | |
@Description: | |
人像抠图 | |
""" | |
import numpy as np | |
from PIL import Image | |
import onnxruntime | |
from .tensor2numpy import NNormalize, NTo_Tensor, NUnsqueeze | |
from .context import Context | |
import cv2 | |
import os | |
from time import time | |
WEIGHTS = { | |
"hivision_modnet": os.path.join( | |
os.path.dirname(__file__), "weights", "hivision_modnet.onnx" | |
), | |
"modnet_photographic_portrait_matting": os.path.join( | |
os.path.dirname(__file__), | |
"weights", | |
"modnet_photographic_portrait_matting.onnx", | |
), | |
"mnn_hivision_modnet": os.path.join( | |
os.path.dirname(__file__), | |
"weights", | |
"mnn_hivision_modnet.mnn", | |
), | |
"rmbg-1.4": os.path.join(os.path.dirname(__file__), "weights", "rmbg-1.4.onnx"), | |
"birefnet-v1-lite": os.path.join( | |
os.path.dirname(__file__), "weights", "birefnet-v1-lite.onnx" | |
), | |
} | |
ONNX_DEVICE = onnxruntime.get_device() | |
ONNX_PROVIDER = ( | |
"CUDAExecutionProvider" if ONNX_DEVICE == "GPU" else "CPUExecutionProvider" | |
) | |
HIVISION_MODNET_SESS = None | |
MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS = None | |
RMBG_SESS = None | |
BIREFNET_V1_LITE_SESS = None | |
def load_onnx_model(checkpoint_path, set_cpu=False): | |
providers = ( | |
["CUDAExecutionProvider", "CPUExecutionProvider"] | |
if ONNX_PROVIDER == "CUDAExecutionProvider" | |
else ["CPUExecutionProvider"] | |
) | |
if set_cpu: | |
sess = onnxruntime.InferenceSession( | |
checkpoint_path, providers=["CPUExecutionProvider"] | |
) | |
else: | |
try: | |
sess = onnxruntime.InferenceSession(checkpoint_path, providers=providers) | |
except Exception as e: | |
if ONNX_DEVICE == "CUDAExecutionProvider": | |
print(f"Failed to load model with CUDAExecutionProvider: {e}") | |
print("Falling back to CPUExecutionProvider") | |
# 尝试使用CPU加载模型 | |
sess = onnxruntime.InferenceSession( | |
checkpoint_path, providers=["CPUExecutionProvider"] | |
) | |
else: | |
raise e # 如果是CPU执行失败,重新抛出异常 | |
return sess | |
def extract_human(ctx: Context): | |
""" | |
人像抠图 | |
:param ctx: 上下文 | |
""" | |
# 抠图 | |
matting_image = get_modnet_matting(ctx.processing_image, WEIGHTS["hivision_modnet"]) | |
# 修复抠图 | |
ctx.processing_image = hollow_out_fix(matting_image) | |
ctx.matting_image = ctx.processing_image.copy() | |
def extract_human_modnet_photographic_portrait_matting(ctx: Context): | |
""" | |
人像抠图 | |
:param ctx: 上下文 | |
""" | |
# 抠图 | |
matting_image = get_modnet_matting_photographic_portrait_matting( | |
ctx.processing_image, WEIGHTS["modnet_photographic_portrait_matting"] | |
) | |
# 修复抠图 | |
ctx.processing_image = matting_image | |
ctx.matting_image = ctx.processing_image.copy() | |
def extract_human_mnn_modnet(ctx: Context): | |
matting_image = get_mnn_modnet_matting( | |
ctx.processing_image, WEIGHTS["mnn_hivision_modnet"] | |
) | |
ctx.processing_image = hollow_out_fix(matting_image) | |
ctx.matting_image = ctx.processing_image.copy() | |
def extract_human_rmbg(ctx: Context): | |
matting_image = get_rmbg_matting(ctx.processing_image, WEIGHTS["rmbg-1.4"]) | |
ctx.processing_image = matting_image | |
ctx.matting_image = ctx.processing_image.copy() | |
# def extract_human_birefnet_portrait(ctx: Context): | |
# matting_image = get_birefnet_portrait_matting( | |
# ctx.processing_image, WEIGHTS["birefnet-portrait"] | |
# ) | |
# ctx.processing_image = matting_image | |
# ctx.matting_image = ctx.processing_image.copy() | |
def extract_human_birefnet_lite(ctx: Context): | |
matting_image = get_birefnet_portrait_matting( | |
ctx.processing_image, WEIGHTS["birefnet-v1-lite"] | |
) | |
ctx.processing_image = matting_image | |
ctx.matting_image = ctx.processing_image.copy() | |
def hollow_out_fix(src: np.ndarray) -> np.ndarray: | |
""" | |
修补抠图区域,作为抠图模型精度不够的补充 | |
:param src: | |
:return: | |
""" | |
b, g, r, a = cv2.split(src) | |
src_bgr = cv2.merge((b, g, r)) | |
# -----------padding---------- # | |
add_area = np.zeros((10, a.shape[1]), np.uint8) | |
a = np.vstack((add_area, a, add_area)) | |
add_area = np.zeros((a.shape[0], 10), np.uint8) | |
a = np.hstack((add_area, a, add_area)) | |
# -------------end------------ # | |
_, a_threshold = cv2.threshold(a, 127, 255, 0) | |
a_erode = cv2.erode( | |
a_threshold, | |
kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)), | |
iterations=3, | |
) | |
contours, hierarchy = cv2.findContours( | |
a_erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE | |
) | |
contours = [x for x in contours] | |
# contours = np.squeeze(contours) | |
contours.sort(key=lambda c: cv2.contourArea(c), reverse=True) | |
a_contour = cv2.drawContours(np.zeros(a.shape, np.uint8), contours[0], -1, 255, 2) | |
# a_base = a_contour[1:-1, 1:-1] | |
h, w = a.shape[:2] | |
mask = np.zeros( | |
[h + 2, w + 2], np.uint8 | |
) # mask 必须行和列都加 2,且必须为 uint8 单通道阵列 | |
cv2.floodFill(a_contour, mask=mask, seedPoint=(0, 0), newVal=255) | |
a = cv2.add(a, 255 - a_contour) | |
return cv2.merge((src_bgr, a[10:-10, 10:-10])) | |
def image2bgr(input_image): | |
if len(input_image.shape) == 2: | |
input_image = input_image[:, :, None] | |
if input_image.shape[2] == 1: | |
result_image = np.repeat(input_image, 3, axis=2) | |
elif input_image.shape[2] == 4: | |
result_image = input_image[:, :, 0:3] | |
else: | |
result_image = input_image | |
return result_image | |
def read_modnet_image(input_image, ref_size=512): | |
im = Image.fromarray(np.uint8(input_image)) | |
width, length = im.size[0], im.size[1] | |
im = np.asarray(im) | |
im = image2bgr(im) | |
im = cv2.resize(im, (ref_size, ref_size), interpolation=cv2.INTER_AREA) | |
im = NNormalize(im, mean=np.array([0.5, 0.5, 0.5]), std=np.array([0.5, 0.5, 0.5])) | |
im = NUnsqueeze(NTo_Tensor(im)) | |
return im, width, length | |
def get_modnet_matting(input_image, checkpoint_path, ref_size=512): | |
global HIVISION_MODNET_SESS | |
if not os.path.exists(checkpoint_path): | |
print(f"Checkpoint file not found: {checkpoint_path}") | |
return None | |
if HIVISION_MODNET_SESS is None: | |
HIVISION_MODNET_SESS = load_onnx_model(checkpoint_path, set_cpu=True) | |
input_name = HIVISION_MODNET_SESS.get_inputs()[0].name | |
output_name = HIVISION_MODNET_SESS.get_outputs()[0].name | |
im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size) | |
matte = HIVISION_MODNET_SESS.run([output_name], {input_name: im}) | |
matte = (matte[0] * 255).astype("uint8") | |
matte = np.squeeze(matte) | |
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA) | |
b, g, r = cv2.split(np.uint8(input_image)) | |
output_image = cv2.merge((b, g, r, mask)) | |
return output_image | |
def get_modnet_matting_photographic_portrait_matting( | |
input_image, checkpoint_path, ref_size=512 | |
): | |
global MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS | |
if not os.path.exists(checkpoint_path): | |
print(f"Checkpoint file not found: {checkpoint_path}") | |
return None | |
if MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS is None: | |
MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS = load_onnx_model( | |
checkpoint_path, set_cpu=True | |
) | |
input_name = MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS.get_inputs()[0].name | |
output_name = MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS.get_outputs()[0].name | |
im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size) | |
matte = MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS.run( | |
[output_name], {input_name: im} | |
) | |
matte = (matte[0] * 255).astype("uint8") | |
matte = np.squeeze(matte) | |
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA) | |
b, g, r = cv2.split(np.uint8(input_image)) | |
output_image = cv2.merge((b, g, r, mask)) | |
return output_image | |
def get_rmbg_matting(input_image: np.ndarray, checkpoint_path, ref_size=1024): | |
global RMBG_SESS | |
if not os.path.exists(checkpoint_path): | |
print(f"Checkpoint file not found: {checkpoint_path}") | |
return None | |
def resize_rmbg_image(image): | |
image = image.convert("RGB") | |
model_input_size = (ref_size, ref_size) | |
image = image.resize(model_input_size, Image.BILINEAR) | |
return image | |
if RMBG_SESS is None: | |
RMBG_SESS = load_onnx_model(checkpoint_path, set_cpu=True) | |
orig_image = Image.fromarray(input_image) | |
image = resize_rmbg_image(orig_image) | |
im_np = np.array(image).astype(np.float32) | |
im_np = im_np.transpose(2, 0, 1) # Change to CxHxW format | |
im_np = np.expand_dims(im_np, axis=0) # Add batch dimension | |
im_np = im_np / 255.0 # Normalize to [0, 1] | |
im_np = (im_np - 0.5) / 0.5 # Normalize to [-1, 1] | |
# Inference | |
result = RMBG_SESS.run(None, {RMBG_SESS.get_inputs()[0].name: im_np})[0] | |
# Post process | |
result = np.squeeze(result) | |
ma = np.max(result) | |
mi = np.min(result) | |
result = (result - mi) / (ma - mi) # Normalize to [0, 1] | |
# Convert to PIL image | |
im_array = (result * 255).astype(np.uint8) | |
pil_im = Image.fromarray( | |
im_array, mode="L" | |
) # Ensure mask is single channel (L mode) | |
# Resize the mask to match the original image size | |
pil_im = pil_im.resize(orig_image.size, Image.BILINEAR) | |
# Paste the mask on the original image | |
new_im = Image.new("RGBA", orig_image.size, (0, 0, 0, 0)) | |
new_im.paste(orig_image, mask=pil_im) | |
return np.array(new_im) | |
def get_mnn_modnet_matting(input_image, checkpoint_path, ref_size=512): | |
if not os.path.exists(checkpoint_path): | |
print(f"Checkpoint file not found: {checkpoint_path}") | |
return None | |
try: | |
import MNN.expr as expr | |
import MNN.nn as nn | |
except ImportError as e: | |
raise ImportError( | |
"The MNN module is not installed or there was an import error. Please ensure that the MNN library is installed by using the command 'pip install mnn'." | |
) from e | |
config = {} | |
config["precision"] = "low" # 当硬件支持(armv8.2)时使用fp16推理 | |
config["backend"] = 0 # CPU | |
config["numThread"] = 4 # 线程数 | |
im, width, length = read_modnet_image(input_image, ref_size=512) | |
rt = nn.create_runtime_manager((config,)) | |
net = nn.load_module_from_file( | |
checkpoint_path, ["input1"], ["output1"], runtime_manager=rt | |
) | |
input_var = expr.convert(im, expr.NCHW) | |
output_var = net.forward(input_var) | |
matte = expr.convert(output_var, expr.NCHW) | |
matte = matte.read() # var转换为np | |
matte = (matte * 255).astype("uint8") | |
matte = np.squeeze(matte) | |
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA) | |
b, g, r = cv2.split(np.uint8(input_image)) | |
output_image = cv2.merge((b, g, r, mask)) | |
return output_image | |
def get_birefnet_portrait_matting(input_image, checkpoint_path, ref_size=512): | |
global BIREFNET_V1_LITE_SESS | |
if not os.path.exists(checkpoint_path): | |
print(f"Checkpoint file not found: {checkpoint_path}") | |
return None | |
def transform_image(image): | |
image = image.resize((1024, 1024)) # Resize to 1024x1024 | |
image = ( | |
np.array(image, dtype=np.float32) / 255.0 | |
) # Convert to numpy array and normalize to [0, 1] | |
image = (image - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225] # Normalize | |
image = np.transpose(image, (2, 0, 1)) # Change from (H, W, C) to (C, H, W) | |
image = np.expand_dims(image, axis=0) # Add batch dimension | |
return image.astype(np.float32) # Ensure the output is float32 | |
orig_image = Image.fromarray(input_image) | |
input_images = transform_image( | |
orig_image | |
) # This will already have the correct shape | |
# 记录加载onnx模型的开始时间 | |
load_start_time = time() | |
if BIREFNET_V1_LITE_SESS is None: | |
print("首次加载birefnet-v1-lite模型...") | |
if ONNX_DEVICE == "GPU": | |
print("onnxruntime-gpu已安装,尝试使用CUDA加载模型") | |
try: | |
import torch | |
except ImportError: | |
print( | |
"torch未安装,尝试直接使用onnxruntime-gpu加载模型,这需要配置好CUDA和cuDNN" | |
) | |
BIREFNET_V1_LITE_SESS = load_onnx_model(checkpoint_path) | |
else: | |
BIREFNET_V1_LITE_SESS = load_onnx_model(checkpoint_path, set_cpu=True) | |
# 记录加载onnx模型的结束时间 | |
load_end_time = time() | |
# 打印加载onnx模型所花的时间 | |
print(f"Loading ONNX model took {load_end_time - load_start_time:.4f} seconds") | |
input_name = BIREFNET_V1_LITE_SESS.get_inputs()[0].name | |
print(onnxruntime.get_device(), BIREFNET_V1_LITE_SESS.get_providers()) | |
time_st = time() | |
pred_onnx = BIREFNET_V1_LITE_SESS.run(None, {input_name: input_images})[ | |
-1 | |
] # Use float32 input | |
pred_onnx = np.squeeze(pred_onnx) # Use numpy to squeeze | |
result = 1 / (1 + np.exp(-pred_onnx)) # Sigmoid function using numpy | |
print(f"Inference time: {time() - time_st:.4f} seconds") | |
# Convert to PIL image | |
im_array = (result * 255).astype(np.uint8) | |
pil_im = Image.fromarray( | |
im_array, mode="L" | |
) # Ensure mask is single channel (L mode) | |
# Resize the mask to match the original image size | |
pil_im = pil_im.resize(orig_image.size, Image.BILINEAR) | |
# Paste the mask on the original image | |
new_im = Image.new("RGBA", orig_image.size, (0, 0, 0, 0)) | |
new_im.paste(orig_image, mask=pil_im) | |
return np.array(new_im) | |