import cv2 import numpy as np from ..utils import get_box_pro from ..vision import cover_image, draw_picture_dots def transformationNeck2(image:np.ndarray, per_to_side:float=0.8)->np.ndarray: """ 透视变换脖子函数,输入图像和四个点(矩形框) 矩形框内的图像可能是不完整的(边角有透明区域) 我们将根据透视变换将矩形框内的图像拉伸成和矩形框一样的形状. 算法分为几个步骤: 选择脖子的四个点 -> 选定这四个点拉伸后的坐标 -> 透视变换 -> 覆盖原图 """ _, _, _, a = cv2.split(image) # 这应该是一个四通道的图像 height, width = a.shape def locate_side(image_:np.ndarray, x_:int, y_max:int) -> int: # 寻找x=y, 且 y <= y_max 上从下往上第一个非0的点,如果没找到就返回0 y_ = 0 for y_ in range(y_max - 1, -1, -1): if image_[y_][x_] != 0: break return y_ def locate_width(image_:np.ndarray, y_:int, mode, left_or_right:int=None): # 从y=y这个水平线上寻找两边的非零点 # 增加left_or_right的原因在于为下面check_jaw服务 if mode==1: # 左往右 x_ = 0 if left_or_right is None: left_or_right = 0 for x_ in range(left_or_right, width): if image_[y_][x_] != 0: break else: # 右往左 x_ = width if left_or_right is None: left_or_right = width - 1 for x_ in range(left_or_right, -1, -1): if image_[y_][x_] != 0: break return x_ def check_jaw(image_:np.ndarray, left_, right_): """ 检查选择的点是否与截到下巴,如果截到了,就往下平移一个单位 """ f= True # True代表没截到下巴 # [x, y] for x_cell in range(left_[0] + 1, right_[0]): if image_[left_[1]][x_cell] == 0: f = False break if f is True: return left_, right_ else: y_ = left_[1] + 2 x_left_ = locate_width(image_, y_, mode=1, left_or_right=left_[0]) x_right_ = locate_width(image_, y_, mode=2, left_or_right=right_[0]) left_, right_ = check_jaw(image_, [x_left_, y_], [x_right_, y_]) return left_, right_ # 选择脖子的四个点,核心在于选择上面的两个点,这两个点的确定的位置应该是"宽出来的"两个点 _, _ ,_, a = cv2.split(image) # 这应该是一个四通道的图像 ret,a_thresh = cv2.threshold(a,127,255,cv2.THRESH_BINARY) y_high, y_low, x_left, x_right = get_box_pro(image=image, model=1) # 直接返回矩阵信息 y_left_side = locate_side(image_=a_thresh, x_=x_left, y_max=y_low) # 左边的点的y轴坐标 y_right_side = locate_side(image_=a_thresh, x_=x_right, y_max=y_low) # 右边的点的y轴坐标 y = min(y_left_side, y_right_side) # 将两点的坐标保持相同 cell_left_above, cell_right_above = check_jaw(a_thresh,[x_left, y], [x_right, y]) x_left, x_right = cell_left_above[0], cell_right_above[0] # 此时我们寻找到了脖子的"宽出来的"两个点,这两个点作为上面的两个点, 接下来寻找下面的两个点 if per_to_side >1: assert ValueError("per_to_side 必须小于1!") # 在后面的透视变换中我会把它拉成矩形, 在这里我先获取四个点的高和宽 height_ = 150 # 这个值应该是个变化的值,与拉伸的长度有关,但是现在先规定为150 width_ = x_right - x_left # 其实也就是 cell_right_above[1] - cell_left_above[1] y = int((y_low - y)*per_to_side + y) # 定位y轴坐标 cell_left_below, cell_right_bellow = ([locate_width(a_thresh, y_=y, mode=1), y], [locate_width(a_thresh, y_=y, mode=2), y]) # 四个点全齐,开始透视变换 # 寻找透视变换后的四个点,只需要变换below的两个点即可 # cell_left_below_final, cell_right_bellow_final = ([cell_left_above[1], y_low], [cell_right_above[1], y_low]) # 需要变换的四个点为 cell_left_above, cell_right_above, cell_left_below, cell_right_bellow rect = np.array([cell_left_above, cell_right_above, cell_left_below, cell_right_bellow], dtype='float32') # 变化后的坐标点 dst = np.array([[0, 0], [width_, 0], [0 , height_], [width_, height_]], dtype='float32') # 计算变换矩阵 M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (width_, height_)) final = cover_image(image=warped, background=image, mode=3, x=cell_left_above[0], y=cell_left_above[1]) # tmp = np.zeros(image.shape) # final = cover_image(image=warped, background=tmp, mode=3, x=cell_left_above[0], y=cell_left_above[1]) # final = cover_image(image=image, background=final, mode=3, x=0, y=0) return final def transformationNeck(image:np.ndarray, cutNeckHeight:int, neckBelow:int, toHeight:int,per_to_side:float=0.75) -> np.ndarray: """ 脖子扩充算法, 其实需要输入的只是脖子扣出来的部分以及需要被扩充的高度/需要被扩充成的高度. """ height, width, channels = image.shape _, _, _, a = cv2.split(image) # 这应该是一个四通道的图像 ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化 def locate_width(image_:np.ndarray, y_:int, mode, left_or_right:int=None): # 从y=y这个水平线上寻找两边的非零点 # 增加left_or_right的原因在于为下面check_jaw服务 if mode==1: # 左往右 x_ = 0 if left_or_right is None: left_or_right = 0 for x_ in range(left_or_right, width): if image_[y_][x_] != 0: break else: # 右往左 x_ = width if left_or_right is None: left_or_right = width - 1 for x_ in range(left_or_right, -1, -1): if image_[y_][x_] != 0: break return x_ def check_jaw(image_:np.ndarray, left_, right_): """ 检查选择的点是否与截到下巴,如果截到了,就往下平移一个单位 """ f= True # True代表没截到下巴 # [x, y] for x_cell in range(left_[0] + 1, right_[0]): if image_[left_[1]][x_cell] == 0: f = False break if f is True: return left_, right_ else: y_ = left_[1] + 2 x_left_ = locate_width(image_, y_, mode=1, left_or_right=left_[0]) x_right_ = locate_width(image_, y_, mode=2, left_or_right=right_[0]) left_, right_ = check_jaw(image_, [x_left_, y_], [x_right_, y_]) return left_, right_ x_left = locate_width(image_=a_thresh, mode=1, y_=cutNeckHeight) x_right = locate_width(image_=a_thresh, mode=2, y_=cutNeckHeight) # 在这里我们取消了对下巴的检查,原因在于输入的imageHeight并不能改变 # cell_left_above, cell_right_above = check_jaw(a_thresh, [x_left, imageHeight], [x_right, imageHeight]) cell_left_above, cell_right_above = [x_left, cutNeckHeight], [x_right, cutNeckHeight] toWidth = x_right - x_left # 矩形宽 # 此时我们寻找到了脖子的"宽出来的"两个点,这两个点作为上面的两个点, 接下来寻找下面的两个点 if per_to_side >1: assert ValueError("per_to_side 必须小于1!") y_below = int((neckBelow - cutNeckHeight) * per_to_side + cutNeckHeight) # 定位y轴坐标 cell_left_below = [locate_width(a_thresh, y_=y_below, mode=1), y_below] cell_right_bellow = [locate_width(a_thresh, y_=y_below, mode=2), y_below] # 四个点全齐,开始透视变换 # 需要变换的四个点为 cell_left_above, cell_right_above, cell_left_below, cell_right_bellow rect = np.array([cell_left_above, cell_right_above, cell_left_below, cell_right_bellow], dtype='float32') # 变化后的坐标点 dst = np.array([[0, 0], [toWidth, 0], [0 , toHeight], [toWidth, toHeight]], dtype='float32') M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (toWidth, toHeight)) # 将变换后的图像覆盖到原图上 final = cover_image(image=warped, background=image, mode=3, x=cell_left_above[0], y=cell_left_above[1]) return final def bestJunctionCheck_beta(image:np.ndarray, stepSize:int=4, if_per:bool=False): """ 最优衔接点检测算法, 去寻找脖子的"拐点" """ point_k = 1 _, _, _, a = cv2.split(image) # 这应该是一个四通道的图像 height, width = a.shape ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化 y_high, y_low, x_left, x_right = get_box_pro(image=image, model=1) # 直接返回矩阵信息 def scan(y_:int, max_num:int=2): num = 0 left = False right = False for x_ in range(width): if a_thresh[y_][x_] != 0: if x_ < width // 2 and left is False: num += 1 left = True elif x_ > width // 2 and right is False: num += 1 right = True return True if num >= max_num else False def locate_neck_above(): """ 定位脖子的尖尖脚 """ for y_ in range( y_high - 2, height): if scan(y_): return y_, y_ y_high_left, y_high_right = locate_neck_above() def locate_width_pro(image_:np.ndarray, y_:int, mode): """ 这会是一个生成器,用于生成脖子两边的轮廓 x_, y_ 是启始点的坐标,每一次寻找都会让y_+1 mode==1说明是找左边的边,即,image_[y_][x_] == 0 且image_[y_][x_ + 1] !=0 时跳出; 否则 当image_[y_][x_] != 0 时, x_ - 1; 当image_[y_][x_] == 0 且 image_[y_][x_ + 1] ==0 时x_ + 1 mode==2说明是找右边的边,即,image_[y_][x_] == 0 且image_[y_][x_ - 1] !=0 时跳出 否则 当image_[y_][x_] != 0 时, x_ + 1; 当image_[y_][x_] == 0 且 image_[y_][x_ - 1] ==0 时x_ - 1 """ y_ += 1 if mode == 1: x_ = 0 while 0 <= y_ < height and 0 <= x_ < width: while image_[y_][x_] != 0 and x_ >= 0: x_ -= 1 while image_[y_][x_] == 0 and image_[y_][x_ + 1] == 0 and x_ < width - 2: x_ += 1 yield [y_, x_] y_ += 1 elif mode == 2: x_ = width-1 while 0 <= y_ < height and 0 <= x_ < width: while image_[y_][x_] != 0 and x_ < width - 2: x_ += 1 while image_[y_][x_] == 0 and image_[y_][x_ - 1] == 0 and x_ >= 0: x_ -= 1 yield [y_, x_] y_ += 1 yield False def kGenerator(image_:np.ndarray, mode): """ 导数生成器,用来生成每一个点对应的导数 """ y_ = y_high_left if mode == 1 else y_high_right c_generator = locate_width_pro(image_=image_, y_=y_, mode=mode) for cell in c_generator: nc = locate_width_pro(image_=image_, y_=cell[0] + stepSize, mode=mode) nextCell = next(nc) if nextCell is False: yield False, False else: k = (cell[1] - nextCell[1]) / stepSize yield k, cell def findPt(image_:np.ndarray, mode): k_generator = kGenerator(image_=image_, mode=mode) k, cell = next(k_generator) k_next, cell_next = next(k_generator) if k is False: raise ValueError("无法找到拐点!") while k_next is not False: k_next, cell_next = next(k_generator) if (k_next < - 1 / stepSize) or k_next > point_k: break cell = cell_next # return int(cell[0] + stepSize / 2) return cell[0] # 先找左边的拐点: pointY_left = findPt(image_=a_thresh, mode=1) # 再找右边的拐点: pointY_right = findPt(image_=a_thresh, mode=2) point = (pointY_left + pointY_right) // 2 if if_per is True: point = (pointY_left + pointY_right) // 2 return point / (y_low - y_high) pointX_left = next(locate_width_pro(image_=a_thresh, y_= point - 1, mode=1))[1] pointX_right = next(locate_width_pro(image_=a_thresh, y_=point- 1, mode=2))[1] return [pointX_left, point], [pointX_right, point] def bestJunctionCheck(image:np.ndarray, offset:int, stepSize:int=4): """ 最优点检测算算法输入一张脖子图片(无论这张图片是否已经被二值化,我都认为没有被二值化),输出一个小数(脖子最上方与衔接点位置/脖子图像长度) 与beta版不同的是它新增了一个阈值限定内容. 对于脖子而言,我我们首先可以定位到上面的部分,然后根据上面的这个点向下进行遍历检测. 与beta版类似,我们使用一个stepSize来用作斜率的检测 但是对于遍历检测而言,与beta版不同的是,我们需要对遍历的地方进行一定的限制. 限制的标准是,如果当前遍历的点的横坐标和起始点横坐标的插值超过了某个阈值,则认为是越界. """ point_k = 1 _, _, _, a = cv2.split(image) # 这应该是一个四通道的图像 height, width = a.shape ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化 # 直接返回脖子的位置信息, 修正系数为0, get_box_pro内部也封装了二值化,所以直接输入原图 y_high, y_low, _, _ = get_box_pro(image=image, model=1, correction_factor=0) # 真正有用的只有上下y轴的两个值... # 首先当然是确定起始点的位置,我们用同样的scan扫描函数进行行遍历. def scan(y_:int, max_num:int=2): num = 0 # 设定两个值,分别代表脖子的左边和右边 left = False right = False for x_ in range(width): if a_thresh[y_][x_] != 0: # 检测左边 if x_ < width // 2 and left is False: num += 1 left = True # 检测右边 elif x_ > width // 2 and right is False: num += 1 right = True return True if num >= max_num else False def locate_neck_above(): """ 定位脖子的尖尖脚 """ # y_high就是脖子的最高点 for y_ in range(y_high, height): if scan(y_): return y_ y_start = locate_neck_above() # 得到遍历的初始高度 if y_low - y_start < stepSize: assert ValueError("脖子太小!") # 然后获取一下初始的坐标点 x_left, x_right = 0, width for x_left_ in range(0, width): if a_thresh[y_start][x_left_] != 0: x_left = x_left_ break for x_right_ in range(width -1 , -1, -1): if a_thresh[y_start][x_right_] != 0: x_right = x_right_ break # 接下来我定义两个生成器,首先是脖子轮廓(向下寻找的)生成器,每进行一次next,生成器会返回y+1的脖子轮廓点 def contoursGenerator(image_:np.ndarray, y_:int, mode): """ 这会是一个生成器,用于生成脖子两边的轮廓 y_ 是启始点的y坐标,每一次寻找都会让y_+1 mode==1说明是找左边的边,即,image_[y_][x_] == 0 且image_[y_][x_ + 1] !=0 时跳出; 否则 当image_[y_][x_] != 0 时, x_ - 1; 当image_[y_][x_] == 0 且 image_[y_][x_ + 1] ==0 时x_ + 1 mode==2说明是找右边的边,即,image_[y_][x_] == 0 且image_[y_][x_ - 1] !=0 时跳出 否则 当image_[y_][x_] != 0 时, x_ + 1; 当image_[y_][x_] == 0 且 image_[y_][x_ - 1] ==0 时x_ - 1 """ y_ += 1 try: if mode == 1: x_ = 0 while 0 <= y_ < height and 0 <= x_ < width: while image_[y_][x_] != 0 and x_ >= 0: x_ -= 1 # 这里其实会有bug,不过可以不管 while x_ < width and image_[y_][x_] == 0 and image_[y_][x_ + 1] == 0: x_ += 1 yield [y_, x_] y_ += 1 elif mode == 2: x_ = width-1 while 0 <= y_ < height and 0 <= x_ < width: while x_ < width and image_[y_][x_] != 0: x_ += 1 while x_ >= 0 and image_[y_][x_] == 0 and image_[y_][x_ - 1] == 0: x_ -= 1 yield [y_, x_] y_ += 1 # 当处理失败则返回False except IndexError: yield False # 然后是斜率生成器,这个生成器依赖子轮廓生成器,每一次生成轮廓后会计算斜率,另一个点的选取和stepSize有关 def kGenerator(image_: np.ndarray, mode): """ 导数生成器,用来生成每一个点对应的导数 """ y_ = y_start # 对起始点建立一个生成器, mode=1时是左边轮廓,mode=2时是右边轮廓 c_generator = contoursGenerator(image_=image_, y_=y_, mode=mode) for cell in c_generator: # 寻找距离当前cell距离为stepSize的轮廓点 kc = contoursGenerator(image_=image_, y_=cell[0] + stepSize, mode=mode) kCell = next(kc) if kCell is False: # 寻找失败 yield False, False else: # 寻找成功,返回当坐标点和斜率值 # 对于左边而言,斜率必然是前一个点的坐标减去后一个点的坐标 # 对于右边而言,斜率必然是后一个点的坐标减去前一个点的坐标 k = (cell[1] - kCell[1]) / stepSize if mode == 1 else (kCell[1] - cell[1]) / stepSize yield k, cell # 接着开始写寻找算法,需要注意的是我们是分两边选择的 def findPt(image_:np.ndarray, mode): x_base = x_left if mode == 1 else x_right k_generator = kGenerator(image_=image_, mode=mode) k, cell = k_generator.__next__() if k is False: raise ValueError("无法找到拐点!") k_next, cell_next = k_generator.__next__() while k_next is not False: cell = cell_next if cell[1] > x_base and mode == 2: x_base = cell[1] elif cell[1] < x_base and mode == 1: x_base = cell[1] # 跳出循环的方式一:斜率超过了某个值 if k_next > point_k: print("K out") break # 跳出循环的方式二:超出阈值 elif abs(cell[1] - x_base) > offset: print("O out") break k_next, cell_next = k_generator.__next__() if abs(cell[1] - x_base) > offset: cell[0] = cell[0] - offset - 1 return cell[0] # 先找左边的拐点: pointY_left = findPt(image_=a_thresh, mode=1) # 再找右边的拐点: pointY_right = findPt(image_=a_thresh, mode=2) point = min(pointY_right, pointY_left) per = (point - y_high) / (y_low - y_high) # pointX_left = next(contoursGenerator(image_=a_thresh, y_= point- 1, mode=1))[1] # pointX_right = next(contoursGenerator(image_=a_thresh, y_=point - 1, mode=2))[1] # return [pointX_left, point], [pointX_right, point] return per def checkSharpCorner(image:np.ndarray): _, _, _, a = cv2.split(image) # 这应该是一个四通道的图像 height, width = a.shape ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化 # 直接返回脖子的位置信息, 修正系数为0, get_box_pro内部也封装了二值化,所以直接输入原图 y_high, y_low, _, _ = get_box_pro(image=image, model=1, correction_factor=0) def scan(y_:int, max_num:int=2): num = 0 # 设定两个值,分别代表脖子的左边和右边 left = False right = False for x_ in range(width): if a_thresh[y_][x_] != 0: # 检测左边 if x_ < width // 2 and left is False: num += 1 left = True # 检测右边 elif x_ > width // 2 and right is False: num += 1 right = True return True if num >= max_num else False def locate_neck_above(): """ 定位脖子的尖尖脚 """ # y_high就是脖子的最高点 for y_ in range(y_high, height): if scan(y_): return y_ y_start = locate_neck_above() return y_start def checkJaw(image:np.ndarray, y_start:int): # 寻找"马鞍点" _, _, _, a = cv2.split(image) # 这应该是一个四通道的图像 height, width = a.shape ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化 if width <=1: raise TypeError("图像太小!") x_left, x_right = 0, width - 1 for x_left in range(width): if a_thresh[y_start][x_left] != 0: while a_thresh[y_start][x_left] != 0: x_left += 1 break for x_right in range(width-1, -1, -1): if a_thresh[y_start][x_right] != 0: while a_thresh[y_start][x_right] != 0: x_right -= 1 break point_list_y = [] point_list_x = [] for x in range(x_left, x_right): y = y_start while a_thresh[y][x] == 0: y += 1 point_list_y.append(y) point_list_x.append(x) y = max(point_list_y) x = point_list_x[point_list_y.index(y)] return x, y def checkHairLOrR(cloth_image_input_cut, input_a, neck_a, cloth_image_input_top_y, cutbar_top=0.4, cutbar_bottom=0.5, threshold=0.3): """ 本函数用于检测衣服是否被头发遮挡,当前只考虑左右是否被遮挡,即"一刀切" 返回int 0代表没有被遮挡 1代表左边被遮挡 2代表右边被遮挡 3代表全被遮挡了 约定,输入的图像是一张灰度图,且被二值化过. """ def per_darkPoint(img:np.ndarray) -> int: """ 用于遍历相加图像上的黑点. 然后返回黑点数/图像面积 """ h, w = img.shape sum_darkPoint = 0 for y in range(h): for x in range(w): if img[y][x] == 0: sum_darkPoint += 1 return sum_darkPoint / (h * w) if threshold < 0 or threshold > 1: raise TypeError("阈值设置必须在0和1之间!") # 裁出cloth_image_input_cut按高度40%~50%的区域-cloth_image_input_cutbar,并转换为A矩阵,做二值化 cloth_image_input_height = cloth_image_input_cut.shape[0] _, _, _, cloth_image_input_cutbar = cv2.split(cloth_image_input_cut[ int(cloth_image_input_height * cutbar_top):int( cloth_image_input_height * cutbar_bottom), :]) _, cloth_image_input_cutbar = cv2.threshold(cloth_image_input_cutbar, 127, 255, cv2.THRESH_BINARY) # 裁出input_image、neck_image的A矩阵的对应区域,并做二值化 input_a_cutbar = input_a[cloth_image_input_top_y + int(cloth_image_input_height * cutbar_top): cloth_image_input_top_y + int(cloth_image_input_height * cutbar_bottom), :] _, input_a_cutbar = cv2.threshold(input_a_cutbar, 127, 255, cv2.THRESH_BINARY) neck_a_cutbar = neck_a[cloth_image_input_top_y + int(cloth_image_input_height * cutbar_top): cloth_image_input_top_y + int(cloth_image_input_height * cutbar_bottom), :] _, neck_a_cutbar = cv2.threshold(neck_a_cutbar, 50, 255, cv2.THRESH_BINARY) # 将三个cutbar合到一起-result_a_cutbar input_a_cutbar = np.uint8(255 - input_a_cutbar) result_a_cutbar = cv2.add(input_a_cutbar, cloth_image_input_cutbar) result_a_cutbar = cv2.add(result_a_cutbar, neck_a_cutbar) if_mask = 0 # 我们将图像 一刀切,分为左边和右边 height, width = result_a_cutbar.shape # 一通道图像 left_image = result_a_cutbar[:, :width//2] right_image = result_a_cutbar[:, width//2:] if per_darkPoint(left_image) > threshold: if_mask = 1 if per_darkPoint(right_image) > threshold: if_mask = 3 if if_mask == 1 else 2 return if_mask if __name__ == "__main__": for i in range(1, 8): img = cv2.imread(f"./neck_temp/neck_image{i}.png", cv2.IMREAD_UNCHANGED) # new = transformationNeck(image=img, cutNeckHeight=419,neckBelow=472, toHeight=150) # point_list = bestJunctionCheck(img, offset=5, stepSize=3) # per = bestJunctionCheck(img, offset=5, stepSize=3) # # 返回一个小数的形式, 接下来我将它处理为两个点 point_list = [] # y_high_, y_low_, _, _ = get_box_pro(image=img, model=1, conreection_factor=0) # _y = y_high_ + int((y_low_ - y_high_) * per) # _, _, _, a_ = cv2.split(img) # 这应该是一个四通道的图像 # h, w = a_.shape # r, a_t = cv2.threshold(a_, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化 # _x = 0 # for _x in range(w): # if a_t[_y][_x] != 0: # break # point_list.append([_x, _y]) # for _x in range(w - 1, -1, -1): # if a_t[_y][_x] != 0: # break # point_list.append([_x, _y]) y = checkSharpCorner(img) point = checkJaw(image=img, y_start=y) point_list.append(point) new = draw_picture_dots(img, point_list, pen_size=2) cv2.imshow(f"{i}", new) cv2.waitKey(0) def find_black(image): """ 找黑色点函数,遇到输入矩阵中的第一个黑点,返回它的y值 """ height, width = image.shape[0], image.shape[1] for i in range(height): for j in range(width): if image[i, j] < 127: return i return None def convert_black_array(image): height, width = image.shape[0], image.shape[1] mask = np.zeros([height, width]) for j in range(width): for i in range(height): if image[i, j] > 127: mask[i:, j] = 1 break return mask def checkLongHair(neck_image, head_bottom_y, neck_top_y): """ 长发检测函数,输入为head/neck图像,通过下巴是否为最低点,来判断是否为长发 :return 0 : 短发 :return 1 : 长发 """ jaw_y = neck_top_y + checkJaw(neck_image, y_start=checkSharpCorner(neck_image))[1] if jaw_y >= head_bottom_y-3: return 0 else: return 1 def checkLongHair2(head_bottom_y, cloth_top_y): if head_bottom_y > cloth_top_y+10: return 1 else: return 0