#!/usr/bin/env python # -*- coding: utf-8 -*- r""" @DATE: 2024/9/5 16:45 @File: __init__.py @IDE: pycharm @Description: 创建证件照 """ import numpy as np from typing import Tuple import hivision.creator.utils as U from .context import Context, ContextHandler, Params, Result from .human_matting import extract_human from .face_detector import detect_face_mtcnn, detect_face_face_plusplus from .photo_adjuster import adjust_photo class IDCreator: """ 证件照创建类,包含完整的证件照流程 """ def __init__(self): # 回调时机 self.before_all: ContextHandler = None """ 在所有处理之前,此时图像已经被 resize 到最大边长为 2000 """ self.after_matting: ContextHandler = None """ 在抠图之后,ctx.matting_image 被赋值 """ self.after_detect: ContextHandler = None """ 在人脸检测之后,ctx.face 被赋值,如果为仅换底,则不会执行此回调 """ self.after_all: ContextHandler = None """ 在所有处理之后,此时 ctx.result 被赋值 """ # 处理者 self.matting_handler: ContextHandler = extract_human self.detection_handler: ContextHandler = detect_face_mtcnn # 上下文 self.ctx = None def __call__( self, image: np.ndarray, size: Tuple[int, int] = (413, 295), change_bg_only: bool = False, head_measure_ratio: float = 0.2, head_height_ratio: float = 0.45, head_top_range: float = (0.12, 0.1), ) -> Result: """ 证件照处理函数 :param image: 输入图像 :param change_bg_only: 是否只需要换底 :param size: 输出的图像大小(h,w) :param head_measure_ratio: 人脸面积与全图面积的期望比值 :param head_height_ratio: 人脸中心处在全图高度的比例期望值 :param head_top_range: 头距离顶部的比例(max,min) :return: 返回处理后的证件照和一系列参数 """ # 0.初始化上下文 params = Params( size=size, change_bg_only=change_bg_only, head_measure_ratio=head_measure_ratio, head_height_ratio=head_height_ratio, head_top_range=head_top_range, ) self.ctx = Context(params) ctx = self.ctx ctx.processing_image = image ctx.processing_image = U.resize_image_esp( ctx.processing_image, 2000 ) # 将输入图片 resize 到最大边长为 2000 ctx.origin_image = ctx.processing_image.copy() self.before_all and self.before_all(ctx) # 1. 人像抠图 self.matting_handler(ctx) self.after_matting and self.after_matting(ctx) if ctx.params.change_bg_only: ctx.result = Result( standard=ctx.matting_image, hd=ctx.matting_image, clothing_params=None, typography_params=None, ) self.after_all and self.after_all(ctx) return ctx.result # 2. 人脸检测 self.detection_handler(ctx) self.after_detect and self.after_detect(ctx) # 3. 图像调整 result_image_hd, result_image_standard, clothing_params, typography_params = ( adjust_photo(ctx) ) ctx.result = Result( standard=result_image_standard, hd=result_image_hd, clothing_params=clothing_params, typography_params=typography_params, ) self.after_all and self.after_all(ctx) return ctx.result