#!/usr/bin/env python # -*- coding: utf-8 -*- r""" @DATE: 2024/9/5 21:52 @File: utils.py @IDE: pycharm @Description: hivision提供的工具函数 """ from PIL import Image import io import numpy as np import cv2 import base64 def resize_image_to_kb(input_image, output_image_path, target_size_kb): """ Resize an image to a target size in KB. 将图像调整大小至目标文件大小(KB)。 :param input_image_path: Path to the input image. 输入图像的路径。 :param output_image_path: Path to save the resized image. 保存调整大小后的图像的路径。 :param target_size_kb: Target size in KB. 目标文件大小(KB)。 Example: resize_image_to_kb('input_image.jpg', 'output_image.jpg', 50) """ if isinstance(input_image, np.ndarray): img = Image.fromarray(input_image) elif isinstance(input_image, Image.Image): img = input_image else: raise ValueError("input_image must be a NumPy array or PIL Image.") # Convert image to RGB mode if it's not if img.mode != "RGB": img = img.convert("RGB") # Initial quality value quality = 95 while True: # Create a BytesIO object to hold the image data in memory img_byte_arr = io.BytesIO() # Save the image to the BytesIO object with the current quality img.save(img_byte_arr, format="JPEG", quality=quality) # Get the size of the image in KB img_size_kb = len(img_byte_arr.getvalue()) / 1024 # Check if the image size is within the target size if img_size_kb <= target_size_kb or quality == 1: # If the image is smaller than the target size, add padding if img_size_kb < target_size_kb: padding_size = int( (target_size_kb * 1024) - len(img_byte_arr.getvalue()) ) padding = b"\x00" * padding_size img_byte_arr.write(padding) # Save the image to the output path with open(output_image_path, "wb") as f: f.write(img_byte_arr.getvalue()) break # Reduce the quality if the image is still too large quality -= 5 # Ensure quality does not go below 1 if quality < 1: quality = 1 def resize_image_to_kb_base64(input_image, target_size_kb): """ Resize an image to a target size in KB and return it as a base64 encoded string. 将图像调整大小至目标文件大小(KB)并返回base64编码的字符串。 :param input_image: Input image as a NumPy array or PIL Image. 输入图像,可以是NumPy数组或PIL图像。 :param target_size_kb: Target size in KB. 目标文件大小(KB)。 :return: Base64 encoded string of the resized image. 调整大小后的图像的base64编码字符串。 """ if isinstance(input_image, np.ndarray): img = Image.fromarray(input_image) elif isinstance(input_image, Image.Image): img = input_image else: raise ValueError("input_image must be a NumPy array or PIL Image.") # Convert image to RGB mode if it's not if img.mode != "RGB": img = img.convert("RGB") # Initial quality value quality = 95 while True: # Create a BytesIO object to hold the image data in memory img_byte_arr = io.BytesIO() # Save the image to the BytesIO object with the current quality img.save(img_byte_arr, format="JPEG", quality=quality) # Get the size of the image in KB img_size_kb = len(img_byte_arr.getvalue()) / 1024 # Check if the image size is within the target size if img_size_kb <= target_size_kb or quality == 1: # If the image is smaller than the target size, add padding if img_size_kb < target_size_kb: padding_size = int( (target_size_kb * 1024) - len(img_byte_arr.getvalue()) ) padding = b"\x00" * padding_size img_byte_arr.write(padding) # Encode the image data to base64 img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8") return img_base64 # Reduce the quality if the image is still too large quality -= 5 # Ensure quality does not go below 1 if quality < 1: quality = 1 def numpy_2_base64(img: np.ndarray): _, buffer = cv2.imencode(".png", img) base64_image = base64.b64encode(buffer).decode("utf-8") return base64_image def save_numpy_image(numpy_img, file_path): # 检查数组的形状 if numpy_img.shape[2] == 4: # 将 BGR 转换为 RGB,并保留透明通道 rgb_img = np.concatenate( (np.flip(numpy_img[:, :, :3], axis=-1), numpy_img[:, :, 3:]), axis=-1 ).astype(np.uint8) img = Image.fromarray(rgb_img, mode="RGBA") else: # 将 BGR 转换为 RGB rgb_img = np.flip(numpy_img, axis=-1).astype(np.uint8) img = Image.fromarray(rgb_img, mode="RGB") img.save(file_path) def numpy_to_bytes(numpy_img): img = Image.fromarray(numpy_img) img_byte_arr = io.BytesIO() img.save(img_byte_arr, format="PNG") img_byte_arr.seek(0) return img_byte_arr def hex_to_rgb(value): value = value.lstrip("#") length = len(value) return tuple( int(value[i : i + length // 3], 16) for i in range(0, length, length // 3) ) def generate_gradient(start_color, width, height, mode="updown"): # 定义背景颜色 end_color = (255, 255, 255) # 白色 # 创建一个空白图像 r_out = np.zeros((height, width), dtype=int) g_out = np.zeros((height, width), dtype=int) b_out = np.zeros((height, width), dtype=int) if mode == "updown": # 生成上下渐变色 for y in range(height): r = int( (y / height) * end_color[0] + ((height - y) / height) * start_color[0] ) g = int( (y / height) * end_color[1] + ((height - y) / height) * start_color[1] ) b = int( (y / height) * end_color[2] + ((height - y) / height) * start_color[2] ) r_out[y, :] = r g_out[y, :] = g b_out[y, :] = b else: # 生成中心渐变色 img = np.zeros((height, width, 3)) # 定义椭圆中心和半径 center = (width // 2, height // 2) end_axies = max(height, width) # 定义渐变色 end_color = (255, 255, 255) # 绘制椭圆 for y in range(end_axies): axes = (end_axies - y, end_axies - y) r = int( (y / end_axies) * end_color[0] + ((end_axies - y) / end_axies) * start_color[0] ) g = int( (y / end_axies) * end_color[1] + ((end_axies - y) / end_axies) * start_color[1] ) b = int( (y / end_axies) * end_color[2] + ((end_axies - y) / end_axies) * start_color[2] ) cv2.ellipse(img, center, axes, 0, 0, 360, (b, g, r), -1) b_out, g_out, r_out = cv2.split(np.uint64(img)) return r_out, g_out, b_out def add_background(input_image, bgr=(0, 0, 0), mode="pure_color"): """ 本函数的功能为为透明图像加上背景。 :param input_image: numpy.array(4 channels), 透明图像 :param bgr: tuple, 合成纯色底时的 BGR 值 :param new_background: numpy.array(3 channels),合成自定义图像底时的背景图 :return: output: 合成好的输出图像 """ height, width = input_image.shape[0], input_image.shape[1] b, g, r, a = cv2.split(input_image) a_cal = a / 255 if mode == "pure_color": # 纯色填充 b2 = np.full([height, width], bgr[0], dtype=int) g2 = np.full([height, width], bgr[1], dtype=int) r2 = np.full([height, width], bgr[2], dtype=int) elif mode == "updown_gradient": b2, g2, r2 = generate_gradient(bgr, width, height, mode="updown") else: b2, g2, r2 = generate_gradient(bgr, width, height, mode="center") output = cv2.merge( ((b - b2) * a_cal + b2, (g - g2) * a_cal + g2, (r - r2) * a_cal + r2) ) return output