|
import torch |
|
import numpy as np |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622775") |
|
model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622775") |
|
|
|
def predict(review): |
|
inputs = tokenizer(review, padding=True, truncation=True, return_tensors="pt") |
|
outputs = model(**inputs) |
|
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) |
|
predictions = predictions.detach().numpy()[0] |
|
index = np.argmax(predictions) |
|
score = predictions[index] |
|
return "This review is {:.2f}% {}".format(100*score, "negative" if index==0 else "positive") |
|
|
|
iface = gr.Interface(fn=predict, inputs="text", outputs="text") |
|
iface.launch() |
|
|