ThisIs-Developer commited on
Commit
3881b4e
β€’
1 Parent(s): 25fa5ff

Upload 6 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ data/71763-gale-encyclopedia-of-medicine.-vol.-1.-2nd-ed.pdf filter=lfs diff=lfs merge=lfs -text
37
+ vectorstores/db_faiss/index.faiss filter=lfs diff=lfs merge=lfs -text
data/71763-gale-encyclopedia-of-medicine.-vol.-1.-2nd-ed.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:753cd53b7a3020bbd91f05629b0e3ddcfb6a114d7bbedb22c2298b66f5dd00cc
3
+ size 16127037
ingest.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
2
+ from langchain.document_loaders import PyPDFLoader, DirectoryLoader
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.vectorstores import FAISS
5
+
6
+
7
+ DATA_PATH="data/"
8
+ DB_FAISS_PATH="vectorstores/db_faiss"
9
+
10
+ def create_vector_db():
11
+ loader = DirectoryLoader(DATA_PATH, glob='*.pdf', loader_cls=PyPDFLoader)
12
+ documents =loader.load()
13
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
14
+ texts = text_splitter.split_documents(documents)
15
+
16
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
17
+ model_kwargs = {'device': 'cpu'})
18
+
19
+ db = FAISS.from_documents(texts, embeddings)
20
+ db.save_local(DB_FAISS_PATH)
21
+
22
+ if __name__ == "__main__":
23
+ create_vector_db()
model.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from langchain.document_loaders import PyPDFLoader, DirectoryLoader
3
+ from langchain import PromptTemplate
4
+ from langchain.embeddings import HuggingFaceEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.llms import CTransformers
7
+ from langchain.chains import RetrievalQA
8
+
9
+ DB_FAISS_PATH = 'vectorstores/db_faiss'
10
+
11
+ custom_prompt_template = """Use the following pieces of information to answer the user's question.
12
+ If you don't know the answer, just say that you don't know, don't try to make up an answer.
13
+
14
+ Context: {context}
15
+ Question: {question}
16
+
17
+ Only return the helpful answer below and nothing else.
18
+ Helpful answer:
19
+ """
20
+
21
+ def set_custom_prompt():
22
+ prompt = PromptTemplate(template=custom_prompt_template,
23
+ input_variables=['context', 'question'])
24
+ return prompt
25
+
26
+ def retrieval_qa_chain(llm, prompt, db):
27
+ qa_chain = RetrievalQA.from_chain_type(llm=llm,
28
+ chain_type='stuff',
29
+ retriever=db.as_retriever(search_kwargs={'k': 2}),
30
+ return_source_documents=True,
31
+ chain_type_kwargs={'prompt': prompt}
32
+ )
33
+ return qa_chain
34
+
35
+ def load_llm():
36
+ llm = CTransformers(
37
+ model="TheBloke/Llama-2-7B-Chat-GGML",
38
+ model_type="llama",
39
+ max_new_tokens=512,
40
+ temperature=0.5
41
+ )
42
+ return llm
43
+
44
+ def qa_bot(query):
45
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
46
+ model_kwargs={'device': 'cpu'})
47
+ db = FAISS.load_local(DB_FAISS_PATH, embeddings)
48
+ llm = load_llm()
49
+ qa_prompt = set_custom_prompt()
50
+ qa = retrieval_qa_chain(llm, qa_prompt, db)
51
+
52
+ # Implement the question-answering logic here
53
+ response = qa({'query': query})
54
+ return response['result']
55
+
56
+ def add_vertical_space(spaces=1):
57
+ for _ in range(spaces):
58
+ st.markdown("---")
59
+
60
+ def main():
61
+ st.set_page_config(page_title="Llama-2-GGML Medical Chatbot")
62
+
63
+ with st.sidebar:
64
+ st.title('Llama-2-GGML Medical Chatbot! πŸš€πŸ€–')
65
+ st.markdown('''
66
+ ## About
67
+
68
+ The Llama-2-GGML Medical Chatbot uses the **Llama-2-7B-Chat-GGML** model and was trained on medical data from **"The GALE ENCYCLOPEDIA of MEDICINE"**.
69
+
70
+ ### πŸ”„Bot evolving, stay tuned!
71
+ ## Useful Links πŸ”—
72
+
73
+ - **Model:** [Llama-2-7B-Chat-GGML](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML) πŸ“š
74
+ - **GitHub:** [ThisIs-Developer/Llama-2-GGML-Medical-Chatbot](https://github.com/ThisIs-Developer/Llama-2-GGML-Medical-Chatbot) πŸ’¬
75
+ ''')
76
+ add_vertical_space(1) # Adjust the number of spaces as needed
77
+ st.write('Made by [@ThisIs-Developer](https://huggingface.co/ThisIs-Developer)')
78
+
79
+ st.title("Llama-2-GGML Medical Chatbot")
80
+ st.markdown(
81
+ """
82
+ <style>
83
+ .chat-container {
84
+ display: flex;
85
+ flex-direction: column;
86
+ height: 400px;
87
+ overflow-y: auto;
88
+ padding: 10px;
89
+ }
90
+ .user-bubble {
91
+ background-color: #DCF8C6;
92
+ align-self: flex-end;
93
+ border-radius: 10px;
94
+ padding: 8px;
95
+ margin: 5px;
96
+ max-width: 70%;
97
+ word-wrap: break-word;
98
+ }
99
+ .bot-bubble {
100
+ background-color: #E0E0E0;
101
+ align-self: flex-start;
102
+ border-radius: 10px;
103
+ padding: 8px;
104
+ margin: 5px;
105
+ max-width: 70%;
106
+ word-wrap: break-word;
107
+ }
108
+ </style>
109
+ """
110
+ , unsafe_allow_html=True)
111
+
112
+ conversation = st.session_state.get("conversation", [])
113
+
114
+ query = st.text_input("Ask your question here:", key="user_input")
115
+ if st.button("Get Answer"):
116
+ if query:
117
+ conversation.append({"role": "user", "message": query})
118
+ # Call your QA function
119
+ answer = qa_bot(query)
120
+ conversation.append({"role": "bot", "message": answer})
121
+ st.session_state.conversation = conversation
122
+ else:
123
+ st.warning("Please input a question.")
124
+
125
+ chat_container = st.empty()
126
+ chat_bubbles = ''.join([f'<div class="{c["role"]}-bubble">{c["message"]}</div>' for c in conversation])
127
+ chat_container.markdown(f'<div class="chat-container">{chat_bubbles}</div>', unsafe_allow_html=True)
128
+
129
+ if __name__ == "__main__":
130
+ main()
131
+
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pypdf==3.15.5
2
+ accelerate==0.22.0
3
+ bitsandbytes==0.41.1
4
+ chainlit==0.6.402
5
+ ctransformers==0.2.26
6
+ faiss-cpu==1.7.4
7
+ huggingface-hub==0.16.4
8
+ langchain==0.0.281
9
+ sentence-transformers==2.2.2
10
+ torch==2.0.1
11
+ transformers==4.33.0
vectorstores/db_faiss/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41b1dd53e3fc2abc2535c8c24111b40ede2386c32a1604eaec17f3232646e7ee
3
+ size 10983981
vectorstores/db_faiss/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4007c732db0ecbd2a226c55a6f83f1bb9bf8d899079a2e52b971f8da3d78cea5
3
+ size 3567746